
FSP∗: Optimal Forward Stochastic Planning using relaxed PPDDL operators

Florent Teichteil-Königsbuch and Guillaume Infantes
ONERA-DCSD

2 Avenue Édouard-Belin – BP 74025
31055 Toulouse Cedex 4

France

Ugur Kuter
University of Maryland

Department of Computer Science and
Institute for Advanced Computer Studies,

College Park, Maryland 20742, USA

Introduction
Most of the existing planning algorithms use admissible
heuristics in order to generate fast solutions to planning
problems, without sacrificing optimality. This approach es-
pecially has been very powerful in deterministic planning
domains. Some recent works such as (Bryce, Kambham-
pati, and Smith 2006; Hoffmann and Brafman 2005) has
generalized the use of heuristics for planning under nonde-
terminism, where actions may have more than one possible
outcome, but there are no probabilities, rewards, and costs.

Despite these strides in the use of heuristics for planning,
planning with heuristics in stochastic domains is still open
to further research. In this paper, we describe:
• An optimal forward stochastic planner, FSP∗, that uses

admissible heuristics for MDP planning. FSP∗ is based
on the IMPROVED-LAO∗ algorithm (Hansen and Zilber-
stein 2001); it does a forward-only heuristic search start-
ing from the initial states of an MDP and computes the
value of a partial policy using dynamic programming
techniques, as in IMPROVED-LAO∗. The primary dif-
ference between FSP∗ and IMPROVED-LAO∗ is the ter-
mination criterion for planning. IMPROVED-LAO∗ stops
when the Bellman-error of the states explored so far is be-
low a given threshold, whereas FSP∗ stops when the set
of states, which are reachable with the best current policy,
does not change anymore. While this seems to be a slight
difference, our experiments demonstrated strong differ-
ences between IMPROVED-LAO∗ and FSP∗ in terms of
memory usage and computation time. Nevertheless, there
was no clear winner because in some domains FSP∗ out-
performed IMPROVED-LAO∗, and vice versa.

• New admissible heuristics based on relaxation techniques
inspired by classical planners like FF. Our heuristics in-
clude a state-abstraction technique for MDPs that allows
us to efficiently compute upper and lower bounds on the
value function for pruning, a generalization of FF’s plan-
ning graphs for MDP planning problems.

• A way to compute the partial policies during planning
using a partial state representation, in contrast with ex-
isting optimal stochastic planners of the previous Inter-
national Probabilistic Planning Competitions which were

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mostly exploiting symbolic representations based on Bi-
nary and Algebraic Decision Diagrams. Our preliminary
experiments with symbolic representations demonstrated
that planners such as RTDP (Feng, Hansen, and Zilber-
stein 2003), and LAO∗ and IMPROVED-LAO∗ (Feng and
Hansen 2002) usually solved MDP problems more effi-
ciently by using explicit state representations than using
symbolic ones.

Background

We consider MDP planning problems of the form P =
(S,A, T, γ, Pr,Re,S0,G), where S is a finite set of states
and A is a finite set of actions. T : S × A → 2S is a transi-
tion function, γ is a discount factor, Pr : S×A×S → [0; 1]
is a transition-probability function, Re : S × A × S → R
is a bounded one-stage reward function, S0 is a set of initial
states, and G is a set of goal states. The set of all actions
applicable to a state s is AT (s) = {a ∈ A : T (a, s) 6= ∅}.

Although a policy is often defined to be a function π :
S → A, π does not need always be total. If a state in S is
unreachable from S0 using π, then it can safely be omitted
from the domain of π. Thus, we define a policy to be a
partial function from S into A (i.e., a function from some
set Sπ ⊆ S into A) such that S0 ⊆ Sπ and Sπ is closed
under π and A (i.e., if s ∈ Sπ and s′ ∈ T (s, π(s)), then
s′ ∈ Sπ). If a ∈ AT (s), then Pr(s, a, s′) is the probability
of going to the state s′ if one applies the action a in s.

Given a policy π, the value function V π(s) is the ex-
pected sum of the future discounted rewards, i.e., V π(s) =
Eπ[
∑∞
t=0 γ

t Re(st, π(st), ) |s0 = s], where st is the state
of the MDP at time t, and Re(·) is understood with respect
to the sample space induced by the transition probabilities.

An optimal solution is a policy π∗ such that when exe-
cuted in the initial state s0, π∗ maximizes the value func-
tion. It is well-known (Puterman 1994) that the optimal
value V π

∗
(s) for state s can be computed by solving

V π
∗
(s) = max

a∈AT (s)
Q(s, a)

Q(s, a) =
∑

s′∈T (s,a)

Pr(s, a, s′)
(
γV π

∗
(s′) +Re(s, a, s′)

)



FSP∗: Optimal Forward Stochastic Planning
FSP∗ is a forward search algorithm that uses any admis-
sible heuristic to expand the states. An admissible heuris-
tic is a function h : S → R such that for any state s,
h(s) > V π

∗
(s). The closer h is to V π

∗
, the less states

are explored by FSP∗. In this section, we assume the ex-
istence of such heuristic. In the following section, we will
present different domain-independent heuristics based on re-
laxed PPDDL operators we developed.

FSP∗’ pseudo-code is presented in Algorithm 1. The ver-
sion of FSP∗ used in the competition is based on a graph
implementation defined as:

• a graph is a mapping from PPDDL states to nodes ;

• a PPDDL state is a set of true predicates ;

• a node is a tuple containing the current best action and
best value in this state, as well as a mapping from applica-
ble actions in this state to a list of all stochastic outcomes
(edges) for each action ;

• an edge (outcome) is a tuple containing the probability,
the reward, and the next state of the outcome.

This data structure allows us to generate on-the-fly a graphG
of states which have been explored so far by FSP∗. A node
in G is a tip node if it does not have any outgoing edges.

FSP∗ first initializes the graph G to contain only the ini-
tial state I (lines 1 to 3). Then, the planner alternates be-
tween the following two phases until convergence:

1. optimization of the states reachable by the best current
policy (line 5) ; any dynamic-programming technique can
be used to optimize the policy of these states ;

2. computation of the set of states which are reachable by
the (previously updated) best current policy until reaching
either goal states or non-expanded states (lines 6 to 26).

The algorithm convergences to an optimal policy when the
set of states reachable by the current policy does not change
anymore (all reachable states were previously reachable).

During the forward search phase, the expansion of tip
nodes (line 18) is crucial for performances. This func-
tion, detailed in Algorithm 2, is responsible for creating
and adding new transitions to the tip nodes, and for ini-
tializing values of new created nodes with an admissible
heuristic function (line 10). We use mdpsim as a black-
box whose input is a set of true predicates (graph node)
and whose output is a set of applicable actions and stochas-
tic outcomes. In the following, we present three different
domain-independent admissible heuristics for MDPs based
on relaxation of PPDDL states and operators, inspired by
FF’s problem relaxation technique.

Admissible Heuristics in FSP∗

Heuristics computation usually requires to explore all paths
which start from a given state. Mathematically, this is equiv-
alent to exploring all states which are reachable from a given
state by successively applying all possible actions (breadth-
first search). While enumerating all reachable states may
result in blowing up the computer’s memory, it is possible to

Algorithm 1: FSP∗

// I: initial state
// G = (nodes map): explored states
// nodes map = state (action, value, edges map)
// edges map = AT (state) edges list
// edge = (probability, reward, node)
// T : set of tip nodes
// R: set of nodes reachable with the

best current policy
// F: forward search frontier
G.nodes← {(I,nil)};1
expand node(G.nodes map.get(I));2
R← {G.nodes map.get(I)};3
repeat4

optimize(R, G);5
prevR ← R;6
R← {G.nodes map.get(I)};7
F ← {G.nodes map.get(I)};8
continue search← false;9
repeat10

prevF ← F ;11
for s ∈ prevF do12

for e ∈ s.edges map[s.action] do13
if e.node 6∈ prevR then14

continue search← true;15
end16
if e.node.state ∈ T then17

expand(e.node.state,G, T );18
T .remove(e.node);19

else if s′ 6∈ R then20
F .add(e.node);21
R.add(e.node);22

end23
end24

end25
until F = ∅ ;26

until continue search = false ;27

Algorithm 2: expand(s,G, T ) function
n← G.nodes map.get(s);1
for a ∈ AT (s) do2

el← n.edges map.insert(a,nil);3
for s′ ∈ T (s, a) do4

if s′ ∈ G.nodes map then5
n′ ← G.nodes map.get(s′)6

else7
n′ ← G.nodes map.insert(s′,nil);8
T .add(n′);9
n′.value← compute heuristic(s′);10

end11
el.insert(Pr(s, a, s′), Re(s, a, s′), n′);12

end13
end14

discard all delete effects so that reachable states are instead
abstractly represented as a set of true predicates. Instead of
memorizing a set of states, we now only memorize a single
set of true predicates, which grows as long as new reach-



able states are explored. Formally, ifR is the implicit set of
reachable states, True(s) is the set of all ground atoms that
are true in a state s, and TrueSet = {p1, · · · , pk} is the
explicit set of true predicates, then:

∀s ∈ R, T rue(s) ⊆ TrueSet.

T rueSet is a relaxation of R because it may contain more
states than the actual reachable states.

We define a relaxed transition in an MDP as the tuple
(a, pre, eff, r) where a is a PPDDL action, pre is the dis-
junction of all positive atoms in the preconditions of a, eff
is the disjunction of all positive effects of a (i.e., the atoms
that become true in the world state after a is applied), and
r is the one-step reward-to-go value for a. Such transition
is relaxed because some actions may become applicable in
states where they are not applicable in the real domain.

Relaxed Distance Heuristic (RDH) This heuristic only
applies for shortest stochastic path problems (i.e. rewards
discarded). We assume all transitions have an immediate−1
reward, except transitions to goal states, which have a zero
reward. Given a state s, if d is a lower bound on the length of
all paths to the goals starting in s, then h(s) = −

∑d−2
k=0 γ

k

is an admissible heuristic value of s.
Precisely, the above domain relaxation allows us to easily

compute such a distance lower bound d. We start construct-
ing TrueSet as the set of all true predicates in s. Then,
we successively apply our relaxed transition operator on
TrueSet until either all true predicates of some goal state
are included in TrueSet, or TrueSet is stable. The number
of iterations until convergence is our distance lower bound.

Relaxed Reward Heuristic (RRH) This heuristic is a
generalization of RDH to general MDPs. Given a state s,
assuming T (s) is the set of all reachable states starting in s,
we can prove the following formula:

V π
∗
(s) 6

maxs′∈T (s) maxa∈AT (s′) maxs′′∈T (s′,a) r(s
′, a, s′′)

1− γ

This upper bound can be easily approximated by re-
placing all exact operators by relaxed operators applied on
TrueSet. Like RDH, TrueSet is iteratively computed by
applying successive relaxed operators until it becomes sta-
ble. The maximum over all relaxed rewards gathered dur-
ing TrueSet expansion is an upper bound of the above for-
mula’s numerator.

Relaxed Bound Heuristic (RBH) Like RRH, this heuris-
tic is designed for general MDPs. While easily computable,
RRH is not very informative because it tends to give the
same heuristic value to all states.

A relaxed MDP graph is a directed, acyclic, and leveled
graph in which each level consists of a set of relaxed MDP
transitions as described above. The preconditions of each
relaxed transition at level i must be provided by the effects
of at least one relaxed transition at level i−1. In the first level

of the relaxed MDP graph, the preconditions of the relaxed
MDP transitions must appear in the set of atoms of the initial
state(s) of the MDP.

A relaxed MDP graph M provides a framework to com-
pute value estimates of propositions in the MDP. Suppose p
is a proposition in the MDP planning problem that appears
as a precondition of an action a in the graph; i.e., p is in
pre of some relaxed transition (a, pre, eff, r) in the graph.
Suppose the transition t is at level i. Then, we have

V (p) = r+maxq∈eff (γ max(a′,pre′,eff ′,r′)∈M,q∈pre′V (q)),

where t′ is a relaxed transition at level i + 1 in the relaxed
MDP graph M and γ is the discount factor. The value of a
transition t inM is the maximum of the values of the propo-
sitions that appear in the preconditions of that transition: i.e.,
V (t = (a, pre, eff, c)) = maxP∈preV (p).

Given an MDP planning problem with an initial state (or
a set of initial states) and a set of goal atoms, the heuristic
first generates a relaxed MDP graph in a forward expansion
phase, in which it successively generates new transition lev-
els until goals are reached or there are no new transitions can
be generated. Then, the heuristic does a backward search on
the graph M to compute the values of the transitions. Fi-
nally, the value of a state s, V (s), is defined as follows:

V (s) = maxp∈True(s)V (p).

Note that RBH is an improvement on RRH described
above since RBH keeps track of the successive computed
TrueSets in a relaxed MDP graph, so that backtracking
through this graph provides value estimates of the predicates
in the initial TrueSet.

Acknowledgments. This research was supported in part
by the French Délégation générale pour l’armement grant
07.60.031.00.470.75.01., DARPA’s Transfer Learning and
Integrated Learning programs, and NSF grant IIS0412812.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

References
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning Graph Heuristics for Belief Space Search. Journal of
Artificial Intelligence Research 26:35–99.
Feng, Z., and Hansen, E. A. 2002. Symbolic heuris-
tic search for factored markov decision processes. In
AAAI/IAAI.
Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2003. Sym-
bolic generalization for on-line planning. In UAI.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Hoffmann, J., and Brafman, R. 2005. Contingent Planning
via Heuristic Forward Search with Implicit Belief States.
In ICAPS-05.
Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, INC.


