
The HMDP Planner for Planning with Probabilities

Emil Keyder
Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

emil.keyder@upf.edu

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

hector.geffner@upf.edu

Abstract

HMDPP is a probabilistic planner that computes two heuristic
values for each state and chooses an action to apply through
bounded heuristic search methods. One of these heuristics is
the value of the well-known hadd heuristic on a relaxation of
the underlying MDP in which probabilities are compiled into
costs, and the other is computed from an iteratively generated
pattern database based on the idea of mutex sets of literals, as
computed by the h2 heuristic.

Introduction
The general strategy we apply to probabilistic planning
problems is heuristic evaluation and search. We define two
heuristics for the evaluation of each state, which are then
used in lexicographic ordering to choose the action to be ap-
plied from the current state.

The first heuristic is derived from a novel relaxation of the
underlying Markov Decision Process (MDP) that accounts
for probabilities in a clear and principled way, which we
call the self-loop relaxation. Each probabilistic action in
the original problem is mapped to a set of deterministic ac-
tions which are assigned costs depending on the cost of the
original action and the probability associated with the out-
come represented by the deterministic action in the original
action. The heuristic value of the state is then defined as
the value of a variation of the well-known additive heuristic
(Bonet & Geffner 2001; Keyder & Geffner 2008) on this de-
terminization of the problem. This approach is similar to the
all-outcomes-determinization used by the most recent vari-
ant of FF-Replan (Yoon, Fern, & Givan 2007), yet the self-
loop relaxation takes into account the probability associated
with each outcome rather than treating outcomes as equally
easy to obtain. Furthermore, heuristic values extracted here
are used to guide a local action selection mechanism in the
original problem rather than to guide the search for a com-
plete plan in the relaxed problem.

FF-Replans performance on the probabilistic problems of
the last two planning competitions can be explained by a
number of factors, many of which have to do with the struc-
ture of the problems (Little & Thiebaux 2007). Yet as dis-
cussed in (Little & Thiebaux 2007), this approach is less

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

powerful in a number of domains in which the probability
of reaching a dead-end is non-negligible and care needs to
be taken to construct a policy with high probability of suc-
cess. Specifically, all of the probabilistic effects of an ac-
tion must be taken into account and the delete effects of
outcomes, which are ignored by heuristics that attempt to
approximate the cost of the optimal plan in the delete re-
laxation h+, must be considered. We therefore use a sec-
ond, admissible heuristic that attempts to identify dead-end
and/or high-risk patterns in states. This value is consulted
first in the lexicographic ordering used in the lookahead step
to rank actions, as we always prefer to take a path that mini-
mizes the probability of reaching a dead end.

Self-loop MDPs

An MDP M is characterized by a set of states S, an ini-
tial state s0 ∈ S, a set of goal states G ⊆ S, a set of
actions A, a function giving the applicable actions at each
state A(s) for s ∈ S, a cost function cost(a) for a ∈ A,
and a transition function p(.|s, a) for s ∈ S, a ∈ A(s). We
define a self-loop MDP as an MDP in which all actions have
at most two probabilistic outcomes, and at most one of the
outcomes changes the current state. An action may then ei-
ther deterministically (with probability 1) lead to a different
state, or lead with probability p to a different state and with
probability 1 − p not change the current state. Formally,
in a self-loop MDP the value of p(s′|s, a) when a ∈ A(s)
is non-zero for at most one s′ 6= s. Note that for this s′,
p(s′|s, a) = 1 − p(s|s, a). In self-loop MDPs, uncertainty
is reduced to the number of times that an action must be
applied to obtain the desired outcome, as when it does not
occur, the state does not change and the action can be re-
peated. This insight motivates the chain of reasoning below,
in which we show that the value function for such an MDP is
the same as that of a deterministic MDP with a modified cost
function over the set of actions, or in other words, a classical
planning problem with action costs.

Using the fact that each action has at most two outcomes,
one of which is guaranteed to be a self-loop, the Bellman
equations for the optimal value function V ∗(s) for MDPs of
this type can be written as follows:

V ∗(s) = mina∈A(s)[cost(a) + (1− p(s′|s, a))V ∗(s) +
p(s′|s, a)V ∗(s′)]

Denoting the optimal value obtained at at a state s when
action a is applied as Q∗(s, a), we can write:

Q∗(s, a) = cost(a) + (1− p(s′|s, a)) Q∗(s, a) +
p(s′|s, a) V ∗(s′)

= cost(a)
p(s′|s,a) + V ∗(s′)

The optimal value function of the MDP can then be writ-
ten as

V ∗(s) = mina∈A(s) [Q∗(s, a)]

= mina∈A(s)

[
cost(a)

p(s′|s, a)
+ V ∗(s′)

]
where the value function obtained is that of a deterministic
model in which the cost of each action is set to cost′(a) =
cost(a)/p(s′|s, a), where p(s′|s, a) is the probability of the
non self-loop outcome of the action. Solving this determin-
istic problem optimally then gives the optimal value function
for the associated self-loop MDP.

The Self-loop Relaxation
Here we define the self-loop relaxation MSL of an arbitrary
MDP M , obtained by modifying the set of actions A, the ap-
plicability function A(s) and the transition function p(.|s, a)
of M . A′, A′(s), and p′(.|s, a) in MSL are then defined as
follows:

A′ = {a′s,s′ |a ∈ A(s) ∧ p(s′|s, a) 6= 0}
A′(s) = {a′s,s′ |a ∈ A(s)}

p′(s′|s, a′s,s′′) =

{
p(s′|s, a) if s′ = s′′

1− p(s′′|s, a) if s = s′

0 otherwise

Informally, for each outcome of an action in the original
MDP with probability p, we create a new action that has
the outcome with probability p, and with probability 1 − p
has no effect. Though here we have discussed the relax-
ation in terms of the state space of the MDP, it can easily
be expressed in terms of the factored representation used in
PPDDL, by creating two probabilistic effects for each ac-
tion: one that has the same add and delete lists as the prob-
abilistic outcome that is represented by the action, and one
that has no effect.

The Self-loop Relaxation and Cost-sensitive
Heuristics

The self-loop relaxation and the equivalence between the
value function of a self-loop MDP and that of a classical
planning problem with costs suggest a method of obtaining
heuristic estimates of the cost-to-go from any state in the

original MDP. The general procedure is to apply the self-
loop relaxation and obtain a heuristic estimate from the de-
terministic problem which shares the value function of the
relaxed MDP, using any cost-sensitive heuristic from classi-
cal planning. Here we use the duplicate-eliminated version
of the additive heuristic (Bonet & Geffner 2001), which is
discussed in detail in (Keyder & Geffner 2008). We denote
the heuristic estimate of a state s from the original MDP ob-
tained in this way as hSL

add(s).

A Pattern Database Heuristic for MDPs
The drawback of decomposing an action with multiple pos-
sible effects into different actions is that the resulting re-
laxation ignores the undesired effects of actions. We there-
fore use a second mechanism in HMDPP to take the alter-
native effects of actions into account. Roughly, an abstract
and computationally tractable MDP is defined by abstracting
states into patterns, an approach similar to that taken by pat-
tern database heuristics in classical planning, as in (Helmert,
Haslum, & Hoffmann 2007; Haslum et al. 2007). The dif-
ference, however, is that the abstract problem is not a de-
terministic search problem in a pattern space, but rather an
MDP. This MDP is then solved by value iteration, result-
ing in an admissible cost function for the original problem,
which we denote hPDB(s). Details on this construction will
be reported elsewhere.

Using hSL
add and hPDB Together

hSL
add scales up well and often provides strong guidance to-

wards the goal. In contrast, hPDB does not scale up as
well but can identify high-risk states that must be avoided.
HMDPP integrates the two heuristics in a simple way:
roughly, among the actions that minimize the expected value
of hPDB , those that also decrease the value of the self-loop
heuristic are selected. We are currently exploring various
look-ahead schemes that make use of this selection criterion
for choosing the action to do in any given state.

Acknowledgements
We thank Felipe Trevizan, now at CMU, who helped us in
the initial stages of this work; and Blai Bonet for making his
mGPT MDP planner available.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Proc. ICAPS-2007.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In 18th European Conference
on Artificial Intelligence (ECAI-08).

Little, I., and Thiebaux, S. 2007. Probabilistic planning
vs replanning. In ICAPS 2007 Workshop on International
Planning Competition: Past, Present and Future.
Yoon, S.; Fern, A.; and Givan, B. 2007. FF-replan: A
baseline for probabilistic planning. In Proc. ICAPS-07.

