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Abstract

Enforced hill-climbing is an effective deterministic hill-
climbing technique that deals with local optima using
breadth-first search (a process called “basin flooding”). We
propose a stochastic generalization of enforced hill-climbing
for use in fully-observable probabilistic planning problems.
We assume a provided heuristic function estimating expected
cost to the goal with flaws such as local optima and plateaus
that thwart straightforward greedy action choice. While
breadth-first search is effective in exploring basins around lo-
cal optima in deterministic problems, for stochastic problems
we build and solve a local Markov-decision process model
of the basin in order to find a good escape policy exiting the
local optimum.
For the planning competition, we use a novel heuristic func-
tion derived from the ideas in the effective re-planner FF-
Replan. This new “controlled-randomness FF heuristic” is
the deterministic FF heuristic computed on the simple deter-
minization of the probabilistic problem that makes available
a deterministic transition wherever a probabilistic transition
was possible.

Introduction
Heuristic estimates of distance-to-the-goal have long been
used in deterministic search and deterministic planning1.
Such estimates typically have flaws such as local extrema
and plateaus that limit their utility. Various methods such as
simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983;
Cerny 1985) and A* (Nilsson 1980) search have been devel-
oped for handling flaws in heuristics. More recently, excel-
lent practical results have been obtained simply by “flood-
ing” local optima using breadth-first search; this method
is called “enforced hill-climbing”. (Hoffmann and Nebel
2001)

The essential goal of enforced hill-climbing is to find a de-
scendant that is strictly better than the current state in heuris-
tic value by performing a local search. Once such a descen-
dant is found, the planner moves to that state and this process
is then repeated. The effectiveness of enforced hill-climbing
is demonstrated in the success of FF.
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We propose a novel tool for stochastic planning by gen-
eralizing enforced hill-climbing to stochastic domains. The
goal of enforced hill-climbing is to reach a state that is bet-
ter than the current state. Here, we construct a breadth-first
local Markov Decision Process (MDP) around any local op-
timum reached and seek a policy that expects to exit this
MDP with a better valued state. Critical to this process is
the direct incorporation of the probabilistic model in find-
ing the desired policy. Here, we find this policy using value
iteration on the local MDP, where the only rewards are the
heuristic values assigned at the exits. As in enforced hill-
climbing, breadth-first expansion around a state occurs only
when there is no action available with Q-value (relative to
the heuristic) achieving the current state’s heuristic value.
Note that although stochastic enforced hill-climbing is an
explicit statespace technique, it can be suitable for use in as-
tronomically large statespaces if the heuristic used has some
flaws of bounded size.

We use a novel heuristic function based on the deter-
minization from the successful re-planner FF-Replan. This
heuristic function, the “controlled-randomness FF heuristic”
(CR-FF), is the FF heuristic (Hoffmann and Nebel 2001)
computed on the FF-Replan (Yoon, Fern, and Givan 2007)
determinization of the probabilistic problem2. The deter-
minization used in FF-Replan is constructed by creating a
new deterministic action for each possible outcome of a
stochastic action while ignoring the probability of such out-
come happening. This effectively allows the planner to con-
trol the randomness in executing actions, making this deter-
minization a kind of relaxation of the problem. We note that
stochastic enforced hill-climbing applies to other heuristic
functions as well.

Technical Background and Related Work
Goal-oriented Markov decision processes We give a
brief review of Markov decision procceses (MDPs) special-
ized to goal-region objectives. For more detail on MDPs,
please see (Bertsekas and Tsitsiklis 1996) and (Sutton and

2The deterministic FF heuristic, described in (Hoffmann
and Nebel 2001), from FF planner version 2.3 available
at http://members.deri.at/˜joergh/ff.html, computes a sequential
relaxed-plan length to the goal using a sequence of ordered sub-
goal steps.



Barto 1998).
A stochastic shortest path Markov decision process

(MDP) M is a tuple (S, A, R, T ) with finite state and ac-
tion spaces S and A, reward function R : S × A × S → R,
and a transition probability function T : S×A → P(S) that
maps (state, action) pairs to probability distributions over S.
To avoid discounting while still assigning finite value to each
state, we require that S contain a zero-reward absorbing state
⊥, i.e., such that R(⊥, a, s) = 0 and T (⊥, a,⊥) = 1 for all
s ∈ S and a ∈ A, and that all policies (as defined below)
lead to this state with probability 1.

Goal-oriented MDPs are MDPs where there is a subset
G ⊆ S of the statespace, containing ⊥, such that: (1)
R(s, a, s′) is zero whenever s ∈ G and minus one other-
wise, and (2) T (g, a,⊥) is one for all a ∈ A and g ∈ G.

Given policy π : S → A for an MDP, the value func-
tion V π(s) gives the expected cumulative reward obtained
from state s selecting action π(s) at each state encountered3.
There is at least one optimal policy π∗ for which V π

∗

(s), ab-
breviated V ∗(s), is no less than V π(s) at every state s, for
any other policy π. The following “Q function” evaluates an
action a with respect to a future-value function V ,

Q(s, a, V ) =
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + V (s′)].

Recursive Bellman equations use Q() to describe V ∗ and
V π as follows. First, V π(s) = Q(s, π(s), V π). Then,
V ∗(s) = maxa∈A Q(s, a, V ∗). Also using Q(), we can se-
lect an action greedily relative to any value function. The
policy Greedy(V ) selects, at any state s, a randomly selected
action from argmaxa∈A Q(s, a, V ).

Value iteration iterates the operation V ′(s) =
maxa∈A Q(s, a, V ), computing the “Bellman update”
V ′ from V , producing a sequence of value functions
converging to V ∗, regardless of the initial V used.

While goal-based MDP problems can be directly spec-
ified as above, they may also be specified exponentially
more compactly using planning languages such as PPDDL
(Younes et al. 2005), which we use for our experiments.
Note that our technique avoids converting the PPDDL prob-
lem explicitly into the above form, but constructs a sequence
of smaller problems of this form as it encounters heuristic
flaws, as we discuss next.

Local Markov decision processes Given an MDP M =
(S, A, R, T ), we define the sub-MDP induced by state set
S′ ⊆ S and heuristic function h : S → R to be the MDP
that equals M inside S ′, but gives terminal reward according
to h upon exiting S ′. Formally, the sub-MDP induced by S ′

and h is given by (S, A, R′, T ′), where R′ and T ′ are given
as follows. Let s be any state in S and a any action in A. For
any state s′ ∈ S′, we take R′(s′, a, s) = 0 and T ′(s′, a, s) =

3Formally, we restrict consideration to domains where all poli-
cies reach a goal state with probability one from all states, to avoid
discounting. In practice we can and do handle deadend states by as-
signing them large negative values if they are recognized by simple
reachability tests.

T (s′, a, s). For any state x in S−S ′, R′(x, a, s) = h(x) and
T ′(x, a,⊥) = 1.

The rough motivation for removing action costs for the
analysis within S′ is that such actions are being considered
by our method to remediate a flawed heuristic; the action
cost to reach a state of higher heuristic value is a measure
of the magnitude of the flaw in the heuristic, but we remove
this cost from the analysis in order to express the subgoal
of “reaching a state with higher heuristic value”. Instead of
diluting this subgoal by adding in action costs, our meth-
ods attempt to minimize the cost to reaching a heuristic im-
provement by constructing choices for S ′ in a breadth first
manner.

Note: throughout this paper we use the terminology of
“climbing” in “value” rather than working with “cost”, even
though we think of heuristics as measuring distance to the
goal. We simply use the negative value of the distance-to-go
heuristic as our value function.

Stochastic Enforced Hill Climbing
Deterministic enforced hill-climbing (Hoffmann and Nebel
2001) searches for a strictly improving successor state and
returns a path from the initial state to such a successor. This
path is an action sequence that guarantees reaching the de-
sired successor. In a stochastic environment, there may be
no single improved descendant that can be reached with
probability one, as the actions may have multiple stochas-
tic outcomes. Thus, in stochastic enforced hill-climbing,
we generalize the idea of searching for a single strictly im-
proved successor state to finding a policy that expects to
improve on the heuristic value of the initial state inside a
dynamically constructed sub-MDP. As formalized in “Lo-
cal Markov decision processes” above, the sub-MDP ignores
the cost to reach such improved states; the secondary goal of
minimizing this cost is embodied by constructing the small-
est sub-MDP enabling success, as described formally below.
Note that, in contrast to replanning techniques, this approach
enables the system to adjust to the uncertainty in action out-
comes without the need to replan.

We present pseudo-code for stochastic enforced hill-
climbing in Figure 1, and explain the terminology used in
the pseudo-code next. The algorithm assumes a non-positive
heuristic function h : S → R as input that assigns zero to
all goal states. Stochastic enforced hill-climbing iteratively
builds and solves sub-MDPs and seeks improved policies
inside such sub-MDPs. Each sub-MDP is induced as de-
fined previously by a state set Σ together with the heuristic
function h. We use two parameters k and α to control the
aggressiveness with which the sub-MDPs are constructed in
an attempt to escape the local optimum or plateau. The hori-
zon parameter k limits the number of steps from the entry
state s0; the heuristic radius parameter α limits the heuristic
distance from h(s0) that states in the sub-MDP may have.
We assume some schedule for selecting more and more ag-
gressive values of k and α to construct increasingly large
sub-MDP problems seeking an exit. Our algorithm applies
to any such schedule.

For any pair (k, α) in the schedule, we define a state set
Σkα. For any α, we define Σ0α(s0) = {s0}. We de-



Stochastic enforced hill-climbing
1. Repeat
2. // for some schedule of (k, α) pairs (ki, αi)
3. s0← current state
4. i = 0, Σ = Σk0α0

5. Repeat
6. V ← Value iteration in sub-MDP(Σ,h)
7. i = i + 1, Σ = Σkiαi

8. Until V (s0) > h(s0) or |Σ| > τ

9. Follow Greedy(V ) until exit Σ or a state visited σ times
10. Until goal achieved

Figure 1: Pseudo-code for stochastic enforced hill-climbing.

fine an operation Extend on a state set to be Extend(Σ) =
{s′ | ∃s ∈ Σ, ∃a ∈ A, P (s, a, s′) > 0}. We can then it-
eratively extend Σkα to be Σ(k+1)α(s0) = Σkα ∪ {s′ ∈
Extend(Σkα) | |h(s′) − h(s0)| ≤ α}.

Thus, in line 6 of Figure 1 , value iteration is conducted
for increasingly large sub-MDPs around s0, seeking a pol-
icy improving h(s0). Depending on the schedule chosen for
k and α, implementation choices may allow reuse of states-
pace and value information as larger MDPs are constructed,
expanding on smaller ones. The implementation may also
choose to proceed down the schedule without interleaving
value iteration if no new states of high value are added to
the sub-MDP.

Early termination The primary termination condition for
repeated sub-MDP construction is the discovery of a pol-
icy improving on the heuristic estimate of the initial state.
However, for flawed heuristic functions that overestimate
state value, especially in domains with unavoidable dead-
ends, this may not be possible. For this reason, in practice,
we impose an overall threshold τ on the size of the sub-MDP
constructed and if τ is exceeded the algorithm stops and uses
the best policy found to that point.

Once a sub-MDP is constructed assigning V (s0) > h(s0)
prior to having at least τ states, the system executes the
greedy policy within the last sub-MDP constructed until the
policy exits the sub-MDP. Again, in practice, we impose a
bound σ on the number of times a state may be repeated
during the execution.
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