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Abstract

This paper describes two approximation-based planners,
CPA(C) and CG°A(H), which search for plans in the space of
sets of partial states. Both planners are built A€ (Son &

Tu 2006) and employ several simplification techniques that
reduce the size of states encountered duing the search pro-
cess.

Introduction

CPA(C)/(H) deal with planning problems with uncertainty
about the initial states and arbitrary state constrainteyT
can be classified as approximation-based planners, which
search for solutions in the space of sets of partial states in
stead of the space of belief states (Sral. 2005). The
approach relies on the observation that a belief state can
(sometimes) be replaced by the intersection of its mem-
bers, thereby reducing the size of the search spayefi-
cantly. The original GA planner is incomplete (Soet al.
2005). Its subsequent versionp&+ (Son & Tu 2006), ad-
dresses this issue by identifying the necessary knowledge
in the initial set of partial states. The completeness condi
tion does not consider state constraints though. Bath C
and QPA+ accept problems described akC-action theo-
ries. Roughly,AL-action theories can represent planning
problems in PDDL with arbitrary axioms.

The two systems RA(C)/(H) are modifications of €A+.
CPA(C) uses best-first-search with a different heuristic func
tion. CPA(H) employs local search using depth-first search.
To conform with the planning competition rules, both in-
clude a PDDL-parser and can accept problems in PDDL-
format. The systems also include a preprocessor, which im-
plement two simplification techniques. Both techniques are
aimed at reducing the size of the states that the planneds nee
to deal with during the search.

The next section introduces the basic concepts used in the
development of the planners and is followed by a description
of the organization of the systems.

Basic Concepts
This section describes the idea of approximation-based pla
ning, the simplification techniques, and the heuristicgluse
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in the development of BA(C)/(H).

Approximation-Based Planning

The approach to approximation-based planning adopted in
CPA(C)/(H) relies on the 0-approximation semantics for
reasoning about effects of actions in presence of incomplet
information about the initial state (Son & Baral 2001). In-
tuitively, the approachi) replaces a belief state bypar-

tial statg which is a set of fluent literals; and ) specifies
how to compute the successor partial state, i.e., the refult
executing an action in a given partial state. This is appeal-
ing for conformant planning since it lower the complexity
of conformant planning (Baral, Kreinovich, & Trejo 2000).
To guarantee completeness, an approximation-based eonfor
mant planner might need to search for solutions in the space
of sets of partial states, called-states

Analysis and Simplifications

The analysis and simplification techniques implemented in
CPA(C)/(H) help simplify the planning instances by reduc-

ing the number of actions, propositions, and size of the ini-
tial cs-state. These techniques include:

e Basic SimplificatiortsWe consider two well-known basic
steps:forward reachabilityand goal relevance Several
planners implement these two steps.

Forward reachability is used to deteg@} propositions
whose truth value cannot be affected by the actions in the
problem specification (w.r.t. the initial statg)i) actions
whose execution cannot be triggered w.r.t. the initiakstat
This process can be modeled as a fixpoint computation.

Goal relevance proceeds in a similar manner, by detecting
actions that are relevant to the achievement of the goal.

e Combination ofoneof-Clauses oneof-clauses are used

to specify the uncertainty about some propositions and/or
mutual exclusion between propositions. The number of
the oneof-clauses and their size (the size of @teof-
clauses is the number of its elements) determine the size

of the initial cs-state.

The idea of the combination ofneof-clauses tech-
nigue is based on th@ninteraction between actions and
propositions in different sub-problems of a conformant
planning problem. This idea is best illustrated with a sim-
ple example.



Let consider the planning problen? with the set e The number of satisfied subgoatienoted by, (X).

of propositions{f, g, h,p,i,j}, the initial statel = . . o B
{oneot(f, ), oneot(h, p). —i, ~j}, the set of actions We investigate two combinationgi.,(X) = (heara(X),
O O DS 2T han(®) and hews() = (hearal(D): haus (D), B (X))

' with the lexical ordering applying on their components.

and the goaly = i A j.
Here,a causes to be true iff is true;c causeg to be true CPA(C) usesic,, and A(H) useshc.

if histrue;b causes to be true ifg is true; andd causes

j to be true ifp is true. System Organization

It is easy to see that the sequence= [a,b,c,d] is a The proposed system is organized as in Fig. 1. The firstcom-

solution of P. Furthermore, the search should start from ponentis a front-end, that acts astatic analyzerThe static

the cs-state consisting of the four states: analyzer is in charge of applying several simplificationd an

o o optimizations to the input problem specification—inityall

{f;=g,h, =p, =i, =5} {=f9,h =p, =i =) expressed in PDDL. The simplified specification (expressed
{fimg,~h,p,—i, =i} {=f,9,~h,p, =i, —j} either in PDDL or in the action language—the native in-

Let P’ be the problem obtained frof by replacing? put format of GA(C)/(H)) produced by the static analyzer

with I, wherel’ = {oneof(f A h,g A p), —i,—j}. is then fed to the actual planner. The separation of the two

stages allows us to investigate the use of different planner

We can see thatv is also a solution ofP’. Further- . e e
applied to the same simplified problem specification.

more, each solution of”’ is a solution of P. This

. . . . . el PI
transformation in interesting since the initial cs-stadevn Static Analyzer [ Plamers ]
consists only of two states{f, —g, h, —p, —i,—j} and CpA+

{=f,g,—h,p,—i,—j}. In other words, the number of Input Simplified

states in the initial belief state (or initial cs-state)ttha Problem Problem '
conformant planner has to consider it is 2, while it o— — —@ :
is 4 in P. This transformation is possible because the  PpbL PODL '
set of actions that are “activated” hyand g is disjoint 0

from the set of actions that are “activated” hyand p,
i.e.,preact({f,g}) Npreact({h,p}) = 0.

Using this technique, manyneof-clauses can be com- Figure 1: Overall System
bined into one, yielding several order of magnitudes re-  The jmplementation of the static analyzer makes use of
duction in the size of the initial cs-state. the PDDL parser originally developed for thee&System;

e Goal Splitting The key idea is that if a probled® con- the parser has been modified to enable the construction of

tains a subgoal whose truth value cannot be negated by a Prolog representation of the problem specification. This
the actions used to reach the other goals, then the prob- Prolog representation is used as the input to the static ana-
lem can be decomposed into smaller problems with dif- lyzer, implemented in Prolog. The analyzer implements the
ferent goals, whose solutions can be combined to create forward/backward simplifications, theneof-combination,

a solution of the original problem. This technique can be and the goal-splitting algorithm. Its output is a sequence
seen as a variation of the goal ordering technique in (Hoff- of simplified problems in4£ which serve as input to the
mann, Porteous, & Sebastia 2004) and relies on the notion planners ®A(C)/(H). An option is also available to produce

of dependence proposed in (Son & Tu 2006). PDDL output from the static analyzer—that can be fed, for
o example, to a different planner.
Heuristics The two planners, GA(C)/(H), are implemented in C++.
The heuristics implemented inF&(C)/(H) are combina-  CPA(C) replaces ®A+'s heuristic function withh.,, and
tions of the following well-known heuristics. makes use of a depth-first search algorithm. This search ex-

o - haustively explores all trajectories from the initial citiahs

e The card|nal|ty_ he_urlstlc:we prefer cs-states that have 4 the goal. Theéh.., heuristic initially gives preference to
a smaller cardinality. In other Word&CMd(_E) — |,Z|, . the cs-states with a lower degree of uncertainty, i.e.ja®s
whereX is a cs-state. Note that we use this heuristic in 5t have a smaller cardinality. If the cardinality of two cs
a forward fashion, and hence, is different from its use in - gate5 does not differ, then the heuristics gives preferemc
(Bertoli, Cimatti, & Roveri 2001; Bryce & Kambhampati e cs-states that maximize the number of satisfied sub-
2004). The intuition behinds this is that planning with  g44| - Finally, if there are no differences, we compare the
complete information is “easier” than planning with in- ¢4i31 sym heuristics of the cs-states and give preference to
complete information and a lower cardinality implies & e ones with the smaller value. To measure the total sum

lower degree of uncertainty. heuristics, we compute the classical relaxed plan for each
e The total sum heuristic:for a cs-stateX, we define state and aggregate the relaxed plans.

hsum(X) = 3 sex d(6), whered(d) is the well-known CPA(H) makes use ofi.s in combination with a best-

sum heuristic value of the problem given that the initial first search algorithm. Similarly to what described ear-

state isd* which is the completion of (Nguyen, Kamb- lier, CPA(H) uses a combination of different heuristics to

hampati, & Nigenda 2002). guide the search. The.; heuristic combines the cardinality



heuristic and the number of satisfied subgoals heuristic. We
evaluate thé..; heuristics in a fashion analogous to the case
of CPA(C), by first using the cardinality heuristic to discr-
minate between cs-states, and successively using the numbe
of satisfied subgoals heuristic for refining the classifarati

of cs-states.

Both planners employ an explicit representation of cs-
states as sets of sets of propositions, and they make use of
the C++ standard librargt d for sets manipulation. To re-
duce the space consumption, a partial state is created only
once and it is shared by all cs-states containing it.

Conclusion and Future Work

We presented the main techniques implemented in the two
conformant planners €A\(C) and GPA(H). Experimentally,
these planners are competitive with state-of-the-art@enf
mant planners in several benchmark domains. One of our
main goals in the near future is to continue this line of re-
search, to address the problems related to the number of ac-
tions in the planning problems. We would also like to inves-
tigate methods to improve the quality of the solutions.

References
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computa-
tional complexity of planning and approximate planningin
the presence of incompletenesd] 122:241-267.
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
search + symbolic model checking = efficient conformant
planning. In Nebel, B., edlJCAI, 467-472. Morgan Kauf-
mann.
Bryce. D. 2006. POND: The Partially-Observable and
Non-Deterministic Planner, Notes on The 5th IPC.
Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance
Measures for Conformant Planning. IRAPS 365-375.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
Graph Heuristics for Belief Space SeardAIR26:35-99.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planningJAIR, 22:215-278.
Nguyen X.L.; Kambhampati, S.; Nigenda, R. 2002. Plan-
ning graph as the basis for deriving heuristics for plan syn-
thesis by state space and CSP seafdh, 135, 73-123.
Son, T., and Baral, C. 2001. Formalizing sensing actions -
a transition function based approadiJ 125(1-2):19-91.
Son, T. C., and Tu, P. H. 2006. On the Completeness of
Approximation Based Reasoning and Planning in Action
Theories with Incomplete Information. KRR 481-491.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, R. 2005.
Conformant Planning for Domains with Constraints — A
New Approach. IPAAAI, 1211-1216.



