
GAMER : Fully-Observable Non-Deterministic Planning
via PDDL-Translation into a Game

Peter Kissmann and Stefan Edelkamp
Faculty of Computer Science

TU Dortmund, Germany
{peter.kissmann,stefan.edelkamp}@cs.uni-dortmund.de

Abstract

This paper presents an optimal planner for the international
probabilistic planning competition at ICAPS-08, IPPC-2008
for short. The planner solves non-deterministic action plan-
ning problems with binary decision diagrams.

The efficiency of the planning approach is based on a trans-
lation of the non-deterministic planning problems into a two-
player turn-taking game, with a set of actions selected by the
solver and a set of actions taken by the environment.

The formalism we use is a PDDL-like planning domain de-
scription language that has been derived to parse and instan-
tiate general games. This conversion allows to derive a con-
cise description of planning domains with a minimized state
vector, thereby exploiting existing static analysis tools for de-
terministic planning.

Subsequently, we apply strong and strong cyclic planning al-
gorithms as found in the literature. We additionally observe
that the policy can be extracted naturally.

Introduction
Non-deterministic planning may be roughly characterized as
planning in anoily world, where the outcome of actions is
uncertain. More formally, non-deterministic planning with
full observability refers to compute a conditional plan that
achieves the goal for a non-deterministic shortest-path plan-
ning problemP = (S, I,A, T ,G) with a finite state space
(set of states)S, an initial stateI ∈ S, a setG ⊆ S of goal
states, setsA(s) of applicable actions for eachs ∈ S, and a
non-deterministic transition functionT (s, a) ⊆ S.

Solutions are policies (partial functions) mapping states
into actions. Letπ : S →

⋃
s∈S A(s) be a policy,Sπ

the domain of definition ofπ, andSπ(s) the set of states
reachable froms usingπ, then we say thatπ is closed with
respect tos if and only if Sπ(s) ⊆ Sπ, π is proper with re-
spect tos iff a goal state can be reached usingπ from all
s ∈ Sπ(s),π is acyclic with respect tos iff there is no trajec-
tory s = (s0, . . . , sn) with i andj such that0 ≤ i < j ≤ n,
andsi = sj . We also say thatπ is closed (resp. proper or
acyclic) with respect toS ′ ⊆ S if it is closed (resp. proper
or acyclic) with respect to alls ∈ S′.

A policy π is a valid solution for the non-deterministic
model iff π is closed and proper with respect to the initial
stateI. A valid policy π is assigned a (worst-case scenario)

costVπ equal to the longest trajectory starting atI and end-
ing at a goal state. For acyclic policies with respect toI we
haveVπ < +∞.

A policy π is optimal if it is a valid solution of mini-
mum Vπ value. The competition judges the cost of plans
in non-deterministic domains that admit acyclic solutions,
where optimal solutions always have finite cost. In non-
deterministic domains with cyclic solutions, the solutions
are judged solely by the time taken to generate a solution.

In this paper, we discuss the design of the planner GAMER
that solves non-deterministic planning problems optimally,
which means it computes strong and strong-cyclic plans that
reflect optimal policies. The name GAMER refers to the fact
that the planner was implemented as a side-product of our
research in general game play, where we use binary deci-
sion diagrams (BDDs) to find and represent optimal play-
ing strategies. Non-deterministic planning and game play-
ing have much in common as in the former the environment
plays the role of the adversary. We bridged the gap between
general game play and planning by using a PDDL-like input
for the former, which enables using existing static analysis
tools. The distinctive advantage we aimed at is, therefore,
the efficient state encoding by using multi-variate state en-
codings as inferred by many current deterministic planners.
As a consequence, we compile each non-deterministic ac-
tion into two, one representing the actor’s desired move, and
one for the response of the environment.

Transformation
Recall that the formal definition of the probabilistic ver-
sion of PDDL has been enriched with an additional non-
deterministic statement of the form:

(oneofe1 e2 . . . en)

where eachei is a PDDL effect. The semantics is that, when
executing such effect, one of theei, i ∈ {1, . . . , n}, is cho-
sen and applied to the current state.

Usually, PDDL domain input is schematic (parameter-
ized), i. e. the finite number of domain objects for substi-
tuting parameters in predicates and actions are specified in
the problem specific file. A PDDL domain in which all pred-
icates are atoms and in which all actions have zero param-
eters is instantiated or grounded. There are many existing
tools like ADL2STRIPS by Hoffmann, TRANSLATE by

Helmert, PDDLCAT by Haslum, STAN by Fox and Long,
and GROUND by Edelkamp that infer a grounded PDDL
representation given a schematic one. Some of them addi-
tionally provide a partitioning of atoms into mutually exclu-
sive fact groups, which enable a concise state encoding to
multi-variate variables (sometimes called SAS+ encoding of
a planning problem). The inference of a minimal state en-
coding (Edelkamp and Helmert 1999) is essential for the ef-
fectiveness of symbolic BDD-based search methods. More-
over, such state encoding leads to improved heuristics and is
also referred to as SAS+ planning (Helmert 2004).

We wrote a small compiler that parses a non-deterministic
domain and returns the PDDL description of a two-person
turn-taking game, where the active role is played by the
solver, while the non-deterministic effects in the environ-
ment are determined by the opponent. We added an addi-
tional variableaction0-playerto determine the player’s turn
and further variablesaction-<actionName> to determine
the action that was chosen. These variables are all mutu-
ally exclusive. This way, the player chooses an action and
the corresponding action-variable is set. This gives control
to the environment, which decides which of the effects will
be taken. It also ensures all the effects not ine1, . . . , en.
Afterwards, control is returned to the player.

After the translation of the non-deterministic domain into
PDDL representing the two-player games of player and en-
vironment, any PDDL static analyzer can be used to instan-
tiate the domain.

Translation Complexity
Translation is linear in the parameterized domain, which is
very small, and certainly dominated by the action instantia-
tion process in the static analysis tool, which in turn should
be smaller than the planning time for generating the condi-
tional plan.

We now closely look at the state vector. Suppose that
the minimized state representation results in a state vector
(v1, . . . , vl) with eachvi in D(vi) for i ∈ {1, . . . , l}. Then
the vector has

∑l
i=1dlog(|D(vi)|)e bits.

As every action-variable represents the chosing of one of
the actions (and thus the environment’s turn) and the player’s
control-variable represents the player’s turn, they form a
mutually-exclusive group, such that this enlarges the state
vector by the logarithm of the number of actions plus one:
dlog(|A|+ 1)e, resulting in the total number of bits being

dlog(|A|+ 1)e+
l∑

i=1

dlog(|D(vi)|)e.

Computing Conditional Plans
As universal plans are expected to be rather large, a compact
description with Binary Decision Diagrams (BDDs) (Bryant
1985) is promising. BDDs encode state sets rather space ef-
ficiently, exploiting the sharing of state vectors in a decision
diagram with respect to a fixed ordering of the state vari-
ables.

In our implementation we adapted the strong and strong-
cyclic planning algorithms of Cimatti, Roveri, and Traverso

ProcedureStrong-Plan
π′ ← >
π ← ⊥
S ← G ∨ S(π)
while (π 6= π′) ∧ (I 6⊆ S)

π′ ← π
Π← StrongPreImage(S)
π ← π ∨ (Π ∧ ¬S)
S ← G ∨ S(π)

Figure 1: Strong Planning Algorithm.

(2003) to please this input. The algorithms are defined in
terms of state-action tables that map states to their according
actions. The ultimate output is a state-action table in form of
a BDD representingπ(x, a). While strong planning grows
an initially empty plan, strong cyclic planning truncates an
initially universal plan.

For a planning problemP we call a planπ weak, if for
I a terminal state inG is reachable;strong, if the induced
execution structure is acyclic and all its terminal states are
contained inG; strong cyclic, if from every state in the plan
a final state is reachable and every terminal state in the in-
duced execution structure is contained inG.

The intuition for weak plans is that the goal can be
reached, but not necessarily so for all possible paths. For
strong plans, the goal has to be satisfied despite all non-
determinism, and for strong-cyclic plans all execution paths
at least have the chance to reach the goal. We have

WeakPreImage(S′, A) = {S | T (S, A, S′), S ∈ S}
as the set of all statesS that can reach a state inS by per-
formingA; and

SrongPreImage(S′, A) = {S | ∅ 6= Exec(S, A) ⊆ S}
as the set of all statesS from which A is applicable and
application of that reachesS′.

After compiling and instantiating the planning problem,
our approach constructs a BDD representation for the ini-
tial and goal state sets as well as a BDD for a partitioned
transition relationTa(x, x′) with x (x′) being state vectors
in the lifted state space and wherea is any of the player’s or
environment’s moves. Next, we run the adapted algorithms
(shown for the sake of completeness in Figures 1 and 2).

For the strong planning algorithm, the state-action table
is extended by the state-action pairs calculated by the strong
pre-image of all states inπ in each step; the old table is
denoted byπ′; the new one is denoted byπ; the states stored
in π are returned byS(π). The algorithm terminates if no
further change fromπ to π′ can be observed. An alternative
stopping condition is that the initial state has been reached.

The strong cyclic planning algorithm starts with the uni-
versal state-action table. Iteratively, the state-action pairs
whose actions lead to states outside the table are pruned, fol-
lowed by those that are not reachable anymore. Once a fix-
point is reached, those pairs that do not provide any progress
toward the goal are removed from the table as well.

ProcedureStrong-Cyclic-Plan
π′ ← ⊥
π ← >
while (π 6= π′)

π′ ← π
Π← PruneOutgoing(π,G)
π ← PruneUnconnected(Π,G)

if (I ⊆ G ∨ S(π))
Π← ⊥
repeat

Π′ ← Π
S ← G ∨ S(Π)
preImage← π ∧ PreImage(S)
Π← Π ∨ (preImage∧ ¬S)

until (Π′ = Π)
π ← Π

Figure 2: Strong Cyclic Planning Algorithm.

For more details, all the algorithms can be found in
Cimatti, Roveri, and Traverso (2003).

As in our case the action variables are implicit (a part of
the state description). Thus, the BDD for the strong/strong-
cyclic plan that we obtain isπ(x) (a state table compared to
the state-action table used usually).

Extraction of the Plan
Once the algorithm terminates, extracting the conditional
plan is rather obvious. In case a plan is found (other-
wise there is no solution), we just iterate over all ele-
ments ofπ(x). Given such an elements, we quantify over
the action variablesa1, . . . , am (∃a1 . . . am. s) to get the
state’s description and over the state variablesx1, . . . , xl

(∃x1 . . . xl. s) to get the corresponding action to take.
As some state variables are detected as being constants

and thus compiled away by our static analyzer, in the policy
we output we have to insert these again (as being> in all
states).

Initial Tests
We tested our implementation on the the tire-world example
that has been published along IPPC-2008. We observed that
due to the concise state encoding, we actually compile away
some static state variables that were present in the original
problem description. To please the validation tool, we rein-
sert the variables through a monitoring of the omissions that
have been done wrt. the original file.

Moreover, we found out that for the tire-world domain
neither a strong nor a strong-cyclic plan can be computed.
We could compute a weak plan, but according to the rules of
the IPPC-2008 we returnno solution.

Conclusion
We showed how to transform a non-deterministic planning
problem into a two-player turn-taking game in PDDL no-
tation, mainly in order to apply deterministic tools to infer

a minimized state encoding fully automatically. Addition-
ally, this allows to compute disjunctive pre-images. Using
a concise state encoding, we expect smaller BDDs and us-
ing partitioned transition relations, we expect faster running
times. As a feature, conditional plans can be inferred very
naturally, and the extraction of the ASCII representation in
competition format given the BDD is straight-forward.

We used a representation of two-player games that we
found attractive in solving two-player games. Note that there
is also a decent link to CTL model checking (McMillan
1998). It has been observed that searching for a strong plan
for goalφ can be casted as satisfying the CTL goalAG φ. A
strong cyclic plan corresponds to a formulaAGEF φ.

References
Bryant, R. E. 1985. Symbolic manipulation of boolean
functions using a graphical representation. InDAC, 688–
694.
Cimatti, A.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model
checking.AI 147(1-2):35–84.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. InECP, 135–147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InICAPS, 161–170.
McMillan, K. L. 1998. Temporal logic and model check-
ing. In Inan, M. K., and Kurshan, R. P., eds.,Verification
of Digital and Hybrid Systems, 36–54. Springer.

