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Abstract
This paper describes Wizard, a generalised macro-learning
method that participated in the Learning Track of the 6th In-
ternational Planning Competition. Given a planner, a domain,
and a few example problems, Wizard suggests macros that
might help the planner solve future problems in the domain
faster. This implementation compiles macros into regular ac-
tions in the STRIPS and FLUENTS subsets of the PDDL.

Introduction
Wizard is an automated method that suggests macros for
a given planner-domain pair. Using a few example prob-
lems, it learns macros that might help the planner solve fu-
ture problems in the domain faster. The followings are the
features of the implementation reported in this paper.
• Wizard deals only with acquisition of macros; for their

representation and exploitation during planning, it relies
on the support available. Currently PDDL does not sup-
port macros, nor do planners reason about them. Wizard
therefore compiles macros into actions and adds them into
the domain. However, compilation of macros into regular
actions is possible only with the propositional and numer-
ical constructs of PDDL.

• Wizard does not explicitly discover or exploit any spe-
cific planner or domain properties. It works with arbitrary
planners and domains, where arbitrariness is in the char-
acteristics borne or exhibited. Note, most existing macro-
learning methods rely on specific characteristics; for ex-
ample, MARVIN (Coles and Smith 2007) depends on
plateaus in its heuristic profile and symmetries in domains
while Macro-FF (Botea et al. 2005) assumes component
level abstractions in domains and certain causal links in
plans. Nevertheless, Wizard is suitable when improving
performance is the objective but any specific characteris-
tics are not known or are of no concern.

• Wizard learns individual macros by exploring the entire
macro space (restricted by given limits on macro-length
and parameter-count). Thus, it learns any types of macros.
This means Wizard can learn macros that are not observ-
able from the given examples, that are not learnt by any
existing methods, and that have action orderings not ex-
plored by the planner. Note, most existing macro-learning
methods trigger their macro-generation procedures at cer-
tain specific events and learn only macros that are observ-
able from given examples.

• Wizard explores the macro-set space (restricted by a set-
size limit) to learn collections of macros that maximise
the performance by interacting among themselves. A col-
lection of only individually top performing macros may
not collaborate well among themselves. Also, macros in
a top performing macro-set may not be individually top
performing. Note, unlike Wizard, most existing macro-
learning methods do not take these into account and sug-
gest only arbitrarily chosen very small (e.g. 2) numbers
of top performing macros.

• Wizard adopts an evolutionary method to explore the
macro and macro-set spaces. It generates macros using
actions lifted from generalised plans of small example
problems. To evaluate them, it employs a sophisticated
procedure that solves other large example problems with
and without macros and then measures the weighted time
gains. For macro-set generation, Wizard learns individ-
ual macros first and then uses them as constituent macros;
the macro-set evaluation procedure however remains the
same as is used in macro evaluation.

• Wizard does not learn macros that comprise any looping-
structures (e.g. execute move action while certain condi-
tion holds). It has no mechanism to infer loops from an
action sequence. Thus any repetition of actions remains
only as a static action-sequence. To the best of our knowl-
edge, no macro-learning method in the literature learns
looping-structures. No PDDL-based non-learning plan-
ner reasons about them either.
This paper from now on describes Wizard’s design and

implementation. It also discusses where to expect Wizard to
be successful and where to not.

Search Algorithm
Figure 1 shows Wizard’s macro and/or macro-set explo-
ration method, which is based on an evolutionary algorithm.
Evolutionary algorithms repeatedly (for a number of epochs)
generate new individuals (macros or macro-sets in this case)
from current individuals by using genetic operators; only the
best individuals (evaluated by fitness values) however sur-
vive through successive epochs. Genetic operators provide
search diversity by exploring other possible individuals in
the neighbourhood of the current individuals while evalua-
tion methods provide converging search guidance by keep-
ing only the best individuals; maintaining a balance between
them is therefore crucially important.



1. Initialise the population and evaluate each individual to assign a numerical rating.
2. Repeat the following steps for a given number of epochs.

(a) Repeat the following steps for a number equal to the population size.
i. Generate an individual using randomly selected operators and operands, and

exit if a new individual is not found in a reasonable number of attempts.
ii. Evaluate the generated individual and assign a numerical rating.

(b) Replace inferior current individuals by superior new individuals and exit if
replacement is not satisfactory.

(c) Exit if generation of a new individual failed.

3. Suggest the best individuals as the output of the algorithm.

Figure 1: Wizard’s evolutionary search algorithm taking in-
dividuals either as macros or as macro-sets.

Wizard explores the macro-space first and then using the
learnt macros, it builds the macro-set space. The macro-
space is restricted by limits on action-count and parameter-
count. Similarly, the macro-set space is restricted by a limit
on the set-size. Both the search spaces still remain huge as
macros having any numbers of actions and macro-sets hav-
ing any numbers of macros are to be explored. This means
any brute force or systematic but exhaustive search methods
are not very suitable. Wizard therefore adopts an evolution-
ary approach to obtain a motivating search guidance.

Macro Generation
Wizard represents macros both as generalised action se-
quences and as resultant actions having parameters, pre-
conditions and effects (see Figure 2). While the action se-
quences are used for macro generation, the resultant actions,
when added to the domains, facilitate macro exploitation
during planning (note, non-learning planners support only
actions). Genetic operators produce new action sequences
from operand macros’ constituent actions. The new se-
quences are then compiled into resultant actions by the well-
known regression-based action composition1.

Wizard first solves a number of small2 seeding problems
by the planner. It then generalises the plans (see Figure 2)
replacing objects in the problems (e.g. bs) by variables hav-
ing identical names (e.g. ?bs); however, the constants in
the domain (e.g. in, out, left, and right) remain un-
changed as they normally have designated specific roles in
the domain dynamics (not in Figure 2 strictly). Wizard then
uses the generalised actions in building macros. This has an
advantage that macros occurring in plans serve as a baseline
and then trying their neighbourhoods makes the randomness
of the search process somewhat guided. Further, parameters
in actions lifted from generalised plans can be easily uni-
fied by matching their names. Furthermore, many domain
specific issues are normally found resolved in plans. Note,
domain actions if used directly (without any specific analy-
sis) as constituent actions do not facilitate these.

1Action composition by regression is a binary, associative, and
non-commutative operation on actions where the latter action’s pre-
condition and effect are subject to the former action’s effect, and
both actions’ parameters are unified appropriately. For further de-
tails, please see (Newton et al. 2007)

2By problem size or difficulty level we mean, the time required
by the given planner to solve the problem with the original domain.
Given a planner, a particular 10 blocks problem could be solved
more quickly (so easier) than a particular 7 blocks problem

Actual Plan Generalised Plan Macro & ResultantAction
(pick b1 left in)
(pick b2 right in)
(move in out)
(drop b1 left out)
(drop b2 right out)
(pick b3 left out)
(move out in)
(drop b3 left in)

(pick ?b1 left in)
(pick ?b2 right in)
(move in out)
(drop ?b1 left out)
(drop ?b2 right out)
(pick ?b3 left out)
(move out in)
(drop ?b3 left in)

(pick ?b3 left out)
(move out in)
(drop ?b3 left in)

action pick-move-drop
parameter ?b3
precond (and . . . )
effect (and . . . )

Figure 2: Plan generalisation and Macro construction.
Figure 3 shows the genetic operators used by Wizard

in generating macros. The operators may not be mini-
mal in any sense and mainly include various plausible lo-
cal search neighbourhood functions. For each macro, the
proposed operators ensure exploration of a large number
of its neighbourhoods. Further motivations are as follows.
Good/bad individuals normally remain in clusters. Discard-
ing/adding/altering a good/bad component explores other in-
dividuals in the same cluster of an individual. Combin-
ing good/bad components of two individuals finds a third
good/bad individual. Constructing individuals from scratch
ensures diversity of the exploration.

Each letter represents an action with its parameters; macros are action sequences
Plans ABCDEFGHK | LMNPQ | RSTUVW | Plans of seeding probs
Macros CDEFG (appears in 1st plan) | KQTV (random; an operand)

Extend BCDEFG | CDEFGH | B precedes; H succeeds CDEFG in a plan
Shrink CDEF | DEFG | Discard one action from either end of CDEFG
Split CDE | FG | CD | EFG | Split CDEFG at a random position
Lift MNP | STUV | Lift randomly but as appears exactly in a plan

Annex PCDEFG | CDEFGP | Add P before or after CDEFG
Inject CWDEFG | CDWEFG | CDEWFG | CDEFWG | Insert W
Delete CEFG | CDFG | CDEG | Delete a middle action from CDEFG
Alter VDEFG | CDVFG | CDEFV | Replace an action in CDEFG by V
Concat CDEFGKQTV | KQTVCDEFG | Concat two macros either way
Crossover CDETV | KQFG | One macro’s prefix plus another macro’s suffix
Construct DGMT | NVF | Accumulate actions randomly to form a macro

Figure 3: Genetic operators for macro manipulation.
The operators are selected randomly following a user-

specified probability distribution. The operand macros are
selected randomly from the current population. The operand
actions are selected from the constituent actions of the
macros in the current population or lifted from the gener-
alised plans of the seeding problems. To initialise the macro
population, only lift and construct operators are used.

Macro Evaluation
The evaluation method produces an augmented domain for
each macro by adding its resultant action into the original
domain. It then solves a number of ranking problems with
the planner using both the original domain and the macro-
augmented domain under the same resource (e.g. time and
memory) limits. The ranking problems are larger than the
seeding problems; they are not so small as time gains cannot
be measured properly for smaller problems; they are also not
so large as an attempt is made to solve them for every macro.
The evaluation method then uses the fitness function shown
in Figure 4 to give a numerical rating to the macro.

The fitness function involves three measures Cover (C),
Score (S), and Point (P ). Cover measures the portion of
ranking problems solved when the macro is used; note,
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Where,
n: #ranking problems to be solved using the original and the augmented domain.
m: #times a ranking problem is to be solved. For a deterministic planner, m = 1.
tk(νk, µk, δk): Time distribution for problem-k while solving with the original
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wk = µk/µ: Weight of gain/loss in mean with more emphasis on the larger probs.
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= 1/n: Weight of gain/loss in dispersion with equal emphasis on all probs.

w = µ/(µ + δ): Overall weight of gain/loss in mean, w.r.t. total time t.
w′ = δ/(µ + δ): Overall weight of gain/loss in dispersion, w.r.t. total time t.
pk = 1 for gain, 0 for loss, 1

2
otherwise. The Student’s t-test at 5% significance

level on tk and t′
k

determines a gain or a loss. Alternatively, sign(µk − µ′

k
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used when m = 1 and/or t-test cannot be used because δs are zero.

Figure 4: A fitness function for macro evaluation.
all ranking problems are solvable3. Score measures the
weighted mean time gain/loss over all the ranking problems
compared to when they are solved using the original domain.
Any gain/loss for a larger problem gets more weight. Point
measures the portion of the ranking problems solved with
the augmented domain taking less or equal time compared to
when they are solved using the original domain. Note, in the
fitness function, Score plays the main role while Cover and
Point mostly counterbalance any misleadingly high value.

Although a deterministic planner takes the same time and
returns the same plan every time a problem is solved, a
stochastic planner takes varying times and returns different
plans. For a stochastic planner, a problem is therefore solved
a number of times and a random variable having parameters
(sample-count ν, mean µ, dispersion δ = σ/

√
ν) is used to

represent the time distribution. Notice that, most calculated
values are normalised in [0,1]. The notion used in compu-
tation of sk and s′k will be clear from their values at certain
points (e.g., sk = 1, 1

2 , and 0 for µ′
k = 0, µk, and ∞ respec-

tively). Moreover, its non-linear characteristic is suitable for
a utility function. Note, the utility values assigned to the
macros are not absolute in any sense; they are rather relative
to the ranking problems and the planner used.

Pruning and Validation
During macro generation, Wizard adopts a number of prun-
ing strategies to discard seemingly inferior macros. To en-

3By solvability we mean, using the original domain, whether
the planner can solve the problem within given resource (e.g. time,
memory, etc.) limits. Whether the goal of a problem can be attained
in a given context is discussed under the term reachability.

sure irrelevant actions are not part of a macro, it checks
for shared parameters (if arity is non-zero) between con-
stituent actions. It does not enforce causal links between ac-
tions because they overrule possible concurrencies and auto-
correlations within a macro. Wizard prunes out incoherent
macros that have opposite literals in their resultant precon-
ditions and effects; macros that have other mutually exclu-
sive literals are however not pruned out. To avoid repeti-
tions, Wizard checks for duplicate and equivalent macros (a
few equivalent macros are shown in Figure 5); it thus eval-
uates only new macros. Wizard also detects inferior macros
during their evaluation. Bad macros cause failure to solv-
ing a problem within given resource limits. Wizard vali-
dates plans produced with macros (as needed). The reason
is certain macros sometimes cause planners to produce in-
valid plans (probably due to bugs).

Different Parameterisation Same Partial Order Same Resultant Action
(pick ?b3 left in)
(move in out)
(drop ?b3 left out)

(pick ?b4 left in)
(move in out)
(drop ?b4 left out)

(pick ?b1 left in)
(pick ?b2 right in)
(move in out)

(pick ?b2 right in)
(pick ?b1 left in)
(move in out)

(pick ?b1 left in)
(move in out)
(move out in)
(pick ?b2 right in)

(pick ?b1 left in)
(pick ?b2 right in)

Figure 5: Equivalent macros in the Gripper domain.

Macro Space
Refer to Figure 6. Coherent macros have constituent actions
such that they can be successfully applied in order by satis-
fying their preconditions accordingly. Although macros are
collections of actions, not all action collections produce co-
herent macros. The macro space therefore includes other
macros that are incoherent. Observable macros are a subset
of coherent macros. Observable macros are coherent but are
found in or observed from a given macro generation source.
The macro generation source for Wizard is a given collection
of plans produced by the given planner.

Incoherent Macros I

Non-observable
Incoherent Macros

NI

I ∪ C = M

I = NI

Coherent Macros C

Non-observable
Coherent Macros

NC

C = O ∪ NC

Observable Macros O

O ⊂ C
O ∪ N = M

N = NC ∪ NI

Figure 6: Entire macro space (M ) as considered by Wizard.
Figure 7 shows three plans of a single problem in the

Gripper domain. There are other possible plans with differ-
ent action sequences and using different grippers. Consid-
ering possible partial orderings of the actions in the plans,
Coherent Macro C1 is observable from Plan A, but not from
Plan B and the converse holds for Coherent Macro C2. In-
coherent Macro I however cannot be observed in any plans
possible. In general, certain action sequences are observable
only in (or not observable at all from) certain plans of the
same problem or the other problems in the domain.

Deterministic planners (e.g. FF) produce the same plan
every time a problem is solved; the plans thus exhibit only
certain patterns (e.g. FF produces plans having the sequence
shown in Plan A in Figure 7). Randomised planners (e.g.
LPG) produce different plans in different runs for the same



Plan A Plan B Plan C
(pick ?b1 left in)
(pick ?b2 right in)
(move in out)
(drop ?b1 left out)
(drop ?b2 right out)
(pick ?b3 left out)
(move out in)
(drop ?b3 left in)

(pick ?b1 left in)
(move in out)
(drop ?b1 left out)
(pick ?b3 left out)
(move out in)
(drop ?b3 left in)
(pick ?b2 right in)
(move in out)
(drop ?b2 right out)

(pick ?b1 left in)
(move in out)
(drop ?b1 left out)
(move out in)
(pick ?b2 right in)
(move in out)
(drop ?b2 right out)
(pick ?b3 left out)
(move out in)
(drop ?b3 left in)

Coherent Macro C1 Coherent Macro C2 Incoherent Macro I
(pick ?b1 left in)
(pick ?b2 right in)
(move in out)

Observable in Plan A
Not in Plan B and C

(move out in)
(drop ?b3 left in)
(move in out)

Observable in Plan B
Not in Plan A and C

(drop ?b left in)
(move in out)
(drop ?b right out)
(move out in)

Not observable at all
Figure 7: Observable and non-observable macros.

problem. Therefore, a number of sample plans (for each
problem) could capture different possible patterns. How-
ever, the question is how many sample plans can capture
all possible patterns. The same question arises for any time
planners (e.g. LPG again) that produce a plan quickly and
continue to produce better quality plans successively. In
general, a thorough planner/domain specific analysis is re-
quired to ensure that a given example collection encom-
passes all possible patterns. Thus, for a given random but
finite collection of plans, it is most likely that certain action
sequences (i.e. macros) remain non-observable.

Most existing macro-learning methods explore only a re-
stricted part of the macro space (the observable macros in
Figure 6); they do not consider macro learning as a prob-
lem of searching over all the macros. Notice that only the
operators extend, split, delete, and lift in Figure 3 are suffi-
cient to explore observable macros (i.e. macros that occur in
plans). Many recent planners select successor actions hastily
without considering even reasonably better choices, let alone
every possible option available. Most learning methods
use example problems that do not necessarily capture var-
ious choices possible. Searching non-observable coherent
macros provides one way to test the unexplored choices.

Interestingly, non-observable incoherent macros (see Fig-
ure 6) can also be useful during search. An incoherent
macro might be applicable in the relaxed plan space and
yield a more useful heuristic distance estimate than could
be achieved without it. More generally, an incoherent macro
might offer search guidance despite being inexecutable (like
the second drop action of the incoherent macro in Figure 7).
Note, planners assume coherent domain theory and do not
check correctness of an action model. Also note, macros are
for automated planners, not for humans. Therefore, adding
incoherent macros to the domain does not destroy the clarity
of the domain to the humans as long as they do not cause in-
valid plans to be produced. Wizard’s motivation is to speed
up planning, even if the macros it learns to achieve that goal
are not intuitively natural or are actually inexecutable.

Macro-Set Learning
The macro-learning process as described so far is run first to
explore individual macros. The individual macros that have
certain minimum fitness level are then used in macro-set

learning; which means no new macro is generated further.
The macro-set learning process uses the genetic operators
shown in Figure 8 to produce macro-sets. Notice that the op-
erators are mostly different set operators; they produce vari-
ous neighbourhood sets of a given set; other motivations are
the same as work behind the genetic operators on macros.
To generate macro-sets, genetic operators are selected ran-
domly following given probability distributions. Note, only
gather operator is used to initialise the macro-set population.
Also note, the operand macro-sets always come from the
current population while operand macros randomly come
from the supplied macros or from the constituent macros
of the macro-sets in the current population. To evaluate a
macro-set. an augmented domain is produced by adding to
the original domain the resultant actions of all the macros
in the macro-set; the rest of the procedure is the same as
described for macro evaluation.

? each letter represents a macro; each string represents a set
Macro-Sets NPQ | QRST | Operands for the operators
Add MNPQ | MQRST | Add M to a macro-set
Drop NP | RST | Drop Q from a macro-set
Change NPW | QRWT | Replace a macro by W
Conjoin NPQRST | Union of the two macro-sets
Disjoin RT | QS | Split QRST into two macro-sets
Exchange NST | PQR | Exchange macros between 2 sets
Gather UVW | XYZ | Accumulate macros randomly
Top JKL | Individually top performing macros
Figure 8: Genetic operators for macro-set manipulations.

Requirements and Limitations
1. The seeding problems must be solved by the planner. For

proper time gain measurements and to keep the training
time within limits, the ranking problems should be solved
by the planner within reasonable times (e.g. 0.5–10 secs).

2. Wizard works only with STRIPS and FLUENTS domains
only; this is because macros are compiled for current
planners. The actions must also be generalised for all
problems in the domain; which means compiled STRIPS
versions of ADL actions are not suitable.

3. Macros normally provide additional choices and have
more parameters than actions (and so huge numbers of
grounded actions). Macros that have much more parame-
ters than actions therefore turn out to be useless.

4. From learning perspective, training and testing problems
must have common characteristics; this is to facilitate
both generalisation and exploitation of knowledge.
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