
REPLICA: Relational Policies Learning in Planning

Rocı́o Garcı́a-Durán, Fernando Fernández and Daniel Borrajo
Universidad Carlos III de Madrid

Avda de la Universidad 30, 28911-Leganés (Madrid), Spain
rgduran@inf.uc3m.es, ffernand@inf.uc3m.es and dborrajo@ia.uc3m.es

Abstract

REPLICA is a relational instance based learning module
for solving STRIPS planning problems described in PDDL.
REPLICA learns a reduced policy represented by a set of pairs
<meta-state,action>. The meta-state represents the current
planning state and the goal; the action represents the opera-
tor to execute in such meta-state. Both are described in terms
of predicate logic. The next action to execute by the policy
is computed as the action associated to the closest meta-state
in that set. First, we extract an initial policy composed of a
set of tuples (meta-state, action) from a set of solution plans.
Second, we reduce this policy to obtain a subset of these tu-
ples that generalizes the complete set. This learning proccess
is done using relational nearest prototype classification. Fi-
nally, we use this policy for ordering the actions of the re-
laxed plans in a lookahead strategy for heuristic and forward
search planning.

Introduction
Heuristic search has been the most successful approach for
suboptimal domain-independent planning (Hoffmann and
Nebel 2001; Gerevini and Serina 2003; Vidal 2004). Its
success is due to the implementation of automated heuristic
techniques based on relaxed plans, which ignore the delete
effects of actions. These plans provide good estimations in
many planning domains, as it can be seen since IPC-2004.
However, this technique does not provide good results in
other domains. In these domains, other automated tech-
niques (Martin and Geffner 2000; Fern, Yoon, and Givan
2004) have been used to learn policies that are able to scale
up well on these cases. Again, learned policies are imperfect
and other thecniques, such as policy rollout (Bertsekas and
Tsitsiklis 1996) and limited discrepancy search (Harvey and
Ginsberg 1995) have been implemented. Other work com-
bines both techniques together: heuristics search and poli-
cies (Yoon, Fern, and Givan 2007) using the policy during
node expansion in the heuristic search.

In this work we present REPLICA.1 It is a relational
instance-based learning technique for solving STRIPS plan-
ning problems. REPLICA learns a reduced policy that is able
to decide the next action to apply in any current meta-state.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1It stands for RElational Policy Learning.

Each meta-state corresponds to the current search state and
the pending goals. The policy is represented by a set of
<meta-statei,actioni> tuples in predicate logic and a dis-
tance metric. This policy is obtained from a set of solution
plans after letting the planner solve a set of simple and ran-
dom problems. One problem with instance-based techniques
is that the size of the set of tuples can increase as we solve
more problems, suffering from the utility problem (Minton
1988): the time to retrieve the right policy can increase up
to a point in which the time to make the decision based on
the stored policy is more than the one needed to search for a
good alternative. To solve this problem, we use a reduction
algorithm to select the most representative set of tuples. The
algorithm, called RNPC (Relational Nearest Prototype Clas-
sification) (Garcı́a-Durán, Fernández, and Borrajo 2008), se-
lects the most relevant instances of the training set. The se-
lected prototypes, together with the distance metric, com-
pose the policy. Finally, we use the reduced policy to order
the actions of the relaxed plans in a lookahead strategy for
heuristic and forward search planning (Vidal 2004).

The next section describes the complete process, which
is explained in three subsections: the planning policy and
distance metric, the learning process and how we use it.

The Complete Process of REPLICA

The complete process can be seen in Figure 1. We describe
it in three steps: first, we extract the examples and generate
the policy; second, we learn the reduced policy that gener-
alizes the previous one; and, finally, we use this policy in a
lookahead strategy to solve test problems. The three steps
are explained in the next three subsections.

Domain

Training 

problems

Sayphi

planner
Plans

Examples

extraction

RIBP

<mi,ai>

RNPC

algorithm

RIBPr

<mi,ai>

Policy

Based

planner

Test

problems

Plans

Figure 1: Scheme of the learning process.



Examples Extraction and Policy Generation
We provide a planner with a set of simple and random train-
ing problems to be solved. To obtain better plans, REPLICA
solves them using the Enforced Hill Climbing algorithm
(EHC) (Hoffmann and Nebel 2001), and then, it refines the
solution with a Depth-First Branch and Bound algorithm
(DFBnB). If EHC fails, an A∗ search is applied. Once we
have the solution plans, we extract the examples to define
the policy. A solution plan is an ordered set of instanti-
ated actions, < a0, . . . , an−1 > such that, when executed,
all goals are achieved. The execution of a plan generates
state transitions that can be seen as tuples < mi, ai > where
ai ∈ A is an instantiated action of the plan, and mi ∈ M
is a meta-state. A meta-state represents an instant on the
search process containing relevant things about the search
that allows making informed decisions (Veloso et al. 1995;
Fernández, Aler, and Borrajo 2007). In our case, each mi

is composed of the state si ∈ S and the pending goals
gi ∈ S. So, M is the set of all possible pairs (s, g). Other
authors have included other features in the representation of
meta-states as previously executed actions (Minton 1988),
alternative pending goals in the case of backward search
planners (Borrajo and Veloso 1997), hierarchical levels in
the case of hybrid POP-hierarhical planners (Fernández,
Aler, and Borrajo 2005), or deletes of the relaxed plan
graph (Yoon, Fern, and Givan 2006). In the future, we would
like to include some of these alternative features in the meta-
states to understand the implications of the representation
language of meta-states.

Relational Instance-Based Policies A Relational
Instance-Based Policy (RIBP), π, is defined by a tuple
π =< L,P, d >. P is a set of tuples, t1, . . . tn where
each tuple ti is defined as < m, a >, where m ∈ M is a
meta-state, and a ∈ A is an instantiated action. Each ti can
be considered as an individual suggestion on how to make
a decision, i.e. the action a that should be executed when
the planner is in state s and tries to achieve the goals g.
L defines the language used to describe the state and the
action spaces. We assume that the state and action spaces
are defined using PDDL. And, d is a distance metric that
can compute the relational distance between two different
meta-states. Thus, a Relational Instance Based Policy,
π : M → A is a mapping from a meta-state to an action.

This definition of policy differs from the classical rein-
forcement learning definition, since the goal is also an input
to the policy. Therefore, a Relational Instance-Based Policy
can be considered an universal policy for the domain, since
it returns an action to execute for any state and any goal of
the domain. Given a meta-state, m, the policy returns the
action to execute following an instance-based approach, by
computing the closest tuple in P and returning its associated
action. To compute the closest tuple, the distance metric d is
used as defined in equation 1.

π(m) = arga min
(<m′,a>∈P )

dist(m,m′) (1)

Next subsection describes the distance metric used in this
work, although different distance metrics could be defined

for different domains. In this work, the distance metric is
based on previously defined metrics for Relational Instance-
Based Learning approaches, the RIBL distance (Kirsten,
Wrobel, and Horváth 2001).

The RIBL Distance To compute the distance between two
meta-states, we follow a simplification of the RIBL distance
metric, which has been adapted to our approach. Let us
assume that we want to compute the distance between two
meta-states, m1 and m2. Also, let us assume that there are
K predicates in a given domain, p1, . . . , pK . Then, the dis-
tance between the meta-states is a function of the distance
between the same predicates in both meta-states, as defined
in equation 2.

d(m1,m2) =

√√√√∑K
k=1 wkdk(m1,m2)2∑K

k=1 wk

(2)

Equation 2 includes a weight factor, wi, for i = 1, . . . ,K,
for each predicate. These weights modify the contribution of
each predicate to the distance metric. And dk(m1,m2) com-
putes the distance contributed by predicate pk to the distance
metric. For instance, in the Zenotravel domain, there are five
different predicates that define the regular predicates of the
domain, plus the ones referring to the goal (K = 5): at, in,
fuel level, next, goal at. There is only one goal predicate,
goal at, since the goal in this domain is always defined in
terms of the predicate at.

In each state there may exist different instantiations of the
same predicate. For instance, two literals of predicate at: (at
p0, c0) and (at pl0, c0). Then, when computing dk(m1,m2)
we are, in fact, computing the distance between two sets of
literals. Equation 3 shows how to compute such distance.

dk(m1,m2) =
1
N

N∑
i=1

min
p∈Pk(m2)

d′k(P i
k(m1), p) (3)

where Pk(mi) is the set of literals of predicate pk in mi,
N is the size of the set Pk(m1), P i

k(mi) returns the ith lit-
eral from the set Pk(mi), and d′k(p1

k, p
2
k) is the distance be-

tween two literals, p1
k and p2

k of predicate pk. Basically, this
equation computes, for each literal p in Pk(m1), the mini-
mal distance to every literal of predicate pk in m2. Then,
the distance returns the average of all those distances. Fi-
nally, we only need to define the function d′k(p1

k, p
2
k). Let us

assume the predicate pk has M arguments. Then,

d′k(p1
k, p

2
k) =

√√√√ 1
M

M∑
l=1

δ(p1
k(l), p2

k(l)) (4)

where pi
k(l) is the lth argument of literal pi

k, and
δ(p1

k(l), p2
k(l)) returns 0 if both values are the same, and 1 if

they are different.
In this approach the static predicates have not been taken

into account. The information on these literals is not spe-
cially relevant and the time for computing the distance de-
creases significantly.



Given these definitions, the distance between two in-
stances depends on the similarity between the names of both
sets of objects. For instance, the distance between two meta-
states that are exactly the same but with different object
names is judged as maximal distance. To partially avoid this
problem, the object names of every meta-state are renamed.
Each object is renamed by its type name and an appearance
index. The first renamed objects are the ones that appear as
parameters of the action, followed by the objects that appear
in the goals. Finally, we rename the objects appearing in
literals of the state. Thus, we try to keep some kind of rele-
vance level of the objects to find a better similarity between
two instances.

The Learning Process
From each resulting plan, {a0, a1, . . . , an−1}, we extract a
set of tuples < mi, ai >. All these tuples from all so-
lution plans compose a policy (RIBP). However, we must
reduce the number of tuples < mi, ai > of the policy to
obtain a reduced one (RIBPr). The higher the number of
tuples is, more time will be needed to reuse the policy. If
this time is too high, it would be better to use the planner
search instead of the learned policy. To reduce the number
of tuples, we use the Relational Nearest Prototype Classi-
fication algorithm (RNPC) (Garcı́a-Durán, Fernández, and
Borrajo 2008), which is a relational version of the origi-
nal algorithm ENPC (Fernández and Isasi 2004). There are
three main differences with that work: RNPC uses a rela-
tional representation; the prototypes are extracted by selec-
tion as in (Kuncheva and Bezdek 1998); and we can reduce
the number of final prototypes by using an optional parame-
ter. The goal is to obtain a reduced set of prototypes P that
generalizes the data set, such that it can predict the class of a
new instance faster than using the complete data set and with
an equivalent accuracy. The RNPC algorithm is independent
of the distance measure and different distance metrics could
be defined for different domains. For the sixth IPC we have
experimented with the RIBL distance described in the pre-
vious section.

Because the RNPC algorithm is stochastic, we execute it
10 times, generating 10 different classifiers or 10 different
RIBPr. In order to use only one of them, we select the best
RIBPr using a validation set of problems; those with higher
complexity in the learning phase of the competition. This
step will return the best RIBPr that solves more problems in
less time, following the metric used in the competition. The
strategy we employed on how to use the policy is explained
in the next subsection.

Using the RIBPr in a Lookahead Strategy for
Relaxed Plan Heuristic Planners
In this section we explain how we use the learned RIBPr to
order the actions of the relaxed plans in a lookahead strategy
for heuristic and forward search planning. Although the re-
laxed plan heuristic can be extended to solution plans (Hoff-
mann and Nebel 2001), the relaxed plan for a given state is
not always a solution plan. It ignores the negative effects
during its computation and the execution of one of these ac-
tions can make the rest of actions not executable. To avoid

this, REPLICA orders the actions of the computed relaxed
plans according to the RIBPr, generating a lookahead state.
Because this lookahead state is closer to the goal than the
direct descendants of the current state, it is added at the be-
ginning of the open list as a new descendent.A lookahead
strategy allows planners to reduce node evaluations, which
is usually the most expensive operation.

The lookahead state of a node is computed by iteratively
selecting the best action to apply from the relaxed plan using
the RIBPr as follows:

• The children with a helpful action, haj , are expanded.

• All the meta-states of the children are renamed following
the binding of haj as we described at the end of the sec-
tion .

• For all the children meta-states the smallest distance to a
prototype in RIBPr with the same action as haj is com-
puted.

• We select the helpful action that obtains the smallest dis-
tance.

The process goes on iteratively until it is not possible to
advance any more in the relaxed plan or the goals have been
achieved. The final state (lookahead state) is placed at the
beginning of the open list.

The combination of the relaxed plan heuristics with the
lookahead strategy guided by a policy offers us some advan-
tages as: we reduced the number of evaluated nodes, and so
the time, improving specially in domains with a strong in-
teraction among the goals; and we can follow the heuristics
even if the policy is not so good. On the other hand, the
behavior of this strategy strongly depends on the distance
metric, and sometimes it fails to capture the right decision.
We are now working on finding a better distance metric.

Acknowledgements
This work has been partially supported by the Spanish
MEC project TIN2005-08945-C06-05, a grant from the
Spanish MEC, and regional CAM-UC3M project CCG06-
UC3M/TIC-0831.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. In Athena Scientific.
Borrajo, D., and Veloso, M. 1997. Lazy incremental learn-
ing of control knowledge for efficiently obtaining quality
plans. AI Review Journal. Special Issue on Lazy Learn-
ing 11(1-5):371–405. Also in the book ”Lazy Learning”,
David Aha (ed.), Kluwer Academic Publishers, May 1997,
ISBN 0-7923-4584-3.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In Pro-
ceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), June
3-7 2004, Whistler, British Columbia, Canada.



Fernández, F., and Isasi, P. 2004. Evolutionary de-
sign of nearest prototype classifiers. Journal of Heuristics
10(4):431–454.
Fernández, S.; Aler, R.; and Borrajo, D. 2005. Machine
learning in hybrid hierarchical and partial-order planners
for manufacturing domains. Applied Artificial Intelligence
19(8):783–809.
Fernández, S.; Aler, R.; and Borrajo, D. 2007. Transferring
learned control-knowledge between planners. In Veloso,
M., ed., Proceedings of IJCAI’07. Hyderabad (India): IJ-
CAI Press. Poster.
Garcı́a-Durán, R.; Fernández, F.; and Borrajo, D. 2008.
Prototypes based relational learniing. In The 13th Interna-
tional Conference on Artificial Intelligence: Methodology,
Systems, Applications. To appear.
Gerevini, A., and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in lpg.
Journal of Artificial Intelligence Research 20.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Inteligence (IJCAI-
95), volume 1, 607–615.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Kirsten, M.; Wrobel, S.; and Horváth, T. 2001. Rela-
tional Data Mining. Springer. chapter Distance Based Ap-
proaches to Relational Learning and Clustering, 213–232.
Kuncheva, L., and Bezdek, J. 1998. Nearest prototype
classfication: Clustering, genetic algorithms, or random
search? IEEE Transactions on Systems, Man, and Cyber-
netics.
Martin, M., and Geffner, H. 2000. Learning generalized
policies from planning examples using concept languages.
In Proc. 7th Int. Conf. on Knowledge Representation and
Reasoning (KR 2000). Colorado: Morgan Kaufmann.
Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston,
MA: Kluwer Academic Publishers.
Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical AI 7:81–120.
Vidal, V. 2004. A lookahead strategy for heuristic
search planning. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, 150–160.
Yoon, S.; Fern, A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In International Conference
on Automated Planning and Scheduling (ICAPS-2006).
Yoon, S.; Fern, A.; and Givan, R. 2007. Using learned
policies in heuristic-search planning. In Proceedings of the
20th IJCAI.


