
A Planner Based on an Automatically Configurable Portfolio of
Domain-independent Planners with Macro-actions: PbP

Beniamino Galvani and Alfonso E. Gerevini and Alessandro Saetti and Mauro Vallati

Dipartimento di Elettronica per l’Automazione
Università degli Studi di Brescia

Via Branze 38, 25123 Brescia, Italy
{gerevini,saetti}@ing.unibs.it

Introduction: the PbP Planner
In the last years, the field of fully-automated plan generation
has significantly advanced. However, while several power-
ful domain-independent planners have been developed, no
one of these clearly outperforms all the others in any known
benchmark domain. It would then be desirable to have a
multi-planner system capable of automatically selecting and
using the most efficient planner(s) for each given domain.

The performance of the current planning systems is typ-
ically affected by the structure of the search space, which
depends on the considered planning domain. In many do-
mains the planning performance can be improved by deriv-
ing and exploiting knowledge about the domain structure
that is not explicitly encoded in the input domain formal-
ization. Several approaches encoding additional knowledge
about the domain in the form of macro-actions have been
proposed (e.g., (Botea et al. 2005; Newton et al. 2007)).
A macro-action is a sequence of actions that can be planned
at one time like a single action. When using macro-actions
there is an important tradeoff to consider. On one hand, their
usage can speedup the planning process, because it reduces
the number of search steps required to reach a solution plan;
on the other hand, it increases the size of the search space,
and this could slow down the planning process.

In this paper, we propose a planner, called PbP (Portfolio-
based Planner), which automatically configures a portfo-
lio of domain-independent planners possibly using macro-
actions. The configuration relies on some additional knowl-
edge on the performance of the planners in the portfolio and
on the observed usefulness of automatically generated sets
of macro-actions. This knowledge is obtained by a statisti-
cal analysis and consists of: useful sets of macro-actions, an
ordered (sub)set of the planners in the initial portfolio, and
some sets of “planning time slots”. A planning time slot is
an amount of CPU-time to be dedicated to a particular plan-
ner using a specific (possibly empty) set of macro-actions
selected during the learning phase. When PbP is used with-
out this additional knowledge, PbP schedules all the plan-
ners in the portfolio by using a simple round-robin strategy
where (predefined) equal CPU-time slots are assigned to the
(randomly ordered) planners. On the contrary, if PbP uses
the computed additional knowledge for the domain under
consideration, only a (sub)set of the planners composing the
portfolio is scheduled, their ordering favors the fastest plan-

Planner Authors, date
FastDownward Helmert, 2006
Metric-FF Hoffmann & Nebel, 2001
LPG-td Gerevini, Saetti & Serina, 2005
MacroFF Botea, Enzenberger, Müller & Schaeffer, 2005
Marvin Coles & Smith, 2007
SGPlan5 Chen, Wah & Hsu, 2006
YAHSP Vidal, 2004

Table 1: The list of the domain-independent planners cur-
rently used in PbP.

ners for the domain under consideration, and the assigned
planning time slots are not necessary equal. Moreover, PbP
runs the selected planners with different sets of (possibly
empty) macro-actions, which in the learning phase are se-
lected w.r.t. a specific planning system.

It should be noted that in our framework the computed
macro-actions are not always used by a planner. Assume
that a planner P performs very well in a domain D, and thus
it is in the set of the planners selected by PbP for solving the
problems in D. If in the learning phase PbP observes that
the set of macro-actions computed for planner P does not
improve the performance of P in D, then PbP schedules the
run of P without using macro-actions.

Our approach is closely related to the work of Howe and
colleagues (Howe et al. 1999; Roberts & Howe 2007), but
with some significant differences. Differently from our ap-
proach, Howe et al.’s system does not configure the portfolio
for a specific domain (while PbP does so); instead the port-
folio is configured using all the training problems in every
input domains; moreover, the planners selected by this sys-
tem are a set covering the whole training problem set, while
in our approach the selection of the planners is based on
a statistical analysis, which considers the CPU-times con-
sumed by the planners to solve the problems in a specific
given domain. Finally, Howe et al.’s system does not com-
pute, analyze or use macro-actions.

The PbP Architecture
Table 1 shows the seven planners considered in the version
of PbP that took part in the learning track of IPC-6. The
architecture of PbP, sketched in Figure 1, consists of four



Solution plan Fail

Planners with macros

Macro-actions

slots
Time

Po
rt

fo
lio

co
nfi

gu
ra

tio
n

Domain and
test problem

Sequence of planners
with macros

Scheduling &
Pl

an
ni

ng

training probs PlannerDomain and

computation

planning

slots computation
Planner selection

and ordering
Planning time

MacroFFWizard

Figure 1: A sketch of the PbP architecture.

main components, which are briefly described below.

Algorithms for computing macro-actions. For each planner
P in Table 1, PbP computes a set of macro-actions for the
domain under consideration. Macro-actions are computed
using Wizard (Newton et al. 2007) and the techniques de-
scribed in (Botea, Müller & Schaeffer 2005).

Algorithms for computing the planning time slots of each
considered planner. For each planner P in Table 1, PbP
defines the planning time slots as the CPU-times used to
solve the following percentages of problems during the
learning phase: {25, 50, 75, 80, 85, 90, 95, 97, 99}. A sim-
ilar method is also used in the round-robin scheduling de-
fined by (Roberts & Howe 2007), but with the technical dif-
ference explained in the following example. Assume that
the computed planning CPU-time slots for planner A are
{0.20, 1.40, 4.80, 22.50, . . . } and that those for planner B
are {14.5, 150.8, . . . }. Then, for this pair of planners, PbP
extends the first CPU-time slot for A to 4.80, which is the
greatest CPU-time slot of A which is smaller than the first
time slot of B (and similarly for the following CPU-time
slots). If we did not extended the first CPU-time slot of
A, the slowest planner B would initially run for a CPU-
time much greater than the CPU-time initially assigned to
the fastest planner A, and for the problems that planner A
quickly solves, PbP would perform significantly slower.

Algorithms for selecting a subset of the planners (possibly
using macro-actions) and for ordering their runs. PbP runs
each planner P in Table 1 with and without using the macro-
actions computed for P . Then, it selects a subset of the plan-
ners in the initial portfolio, each one with a (possibly empty)
set of “useful” macro-actions.

For every subset S of the planners in Table 1, PbP sim-
ulates the run of S using the planner scheduling algorithm
for solving the input problem set of the domain under con-
sideration. Then, PbP selects the best subset(s) of the tested
planners w.r.t. a statistical analysis based on the Wilcoxon

sign-rank test (also known as the “Wilcoxon matched pairs
test”) (Wilcoxon & Wilcox 1964) applied to the CPU-times
resulting from the simulation. In order to break the possible
tie between a pair of planner subsets, PbP considers other
parameters about the observed planning performance, such
as the number of solved problems, the sums of the ratios
between the (simulated) CPU-times of the involved plan-
ner subsets, and the first planning CPU-time slots of the in-
volved planners.

Moreover, in the version of PbP that took part in the com-
petition, the execution order of the selected subset of plan-
ners is trivially defined by the increasing CPU-time slots as-
sociated with the planners.

Algorithms for the planner scheduling and plan generation.
PbP runs the selected ordered planners (using their selected
subset of macro-actions) by a round-robin scheduling algo-
rithm using the computed planning time slots.

Conclusions and Future Work
We have briefly described PbP, a planner based on an au-
tomatically configurable portfolio of domain-independent
planners, which can compute and exploit additional knowl-
edge about a given planning domain specified with PDDL.

In a preliminary experimental study, we have observed
that for several planning domains, the computed addi-
tional knowledge improves the performance of PbP without
learned knowledge, and that often PbP performs better than
any planner forming the initial portfolio considered in the
current implementation.

Future work includes the development of algorithms for
selecting the planners from the portfolio taking into account
some problem dependent parameters. Moreover, we in-
tend to study the integration of the techniques proposed in
(Roberts & Howe 2007) for ordering the selected planner
runs into our framework.

References
A. Botea, M. Enzenberger, M. Müller and J. Schaeffer.
2005. Macro-FF: Improving AI Planning with Automat-
ically Learned Macro-Operators. Journal of Artificial In-
telligence Research (JAIR), v. 24:581–621.
A. Botea, M. Müller and J. Schaeffer. 2005. Learning
Partial-Order Macros from Solutions. In Proc. of 15th Int.
Conf. on Automated Planning and Scheduling (ICAPS-05).
M. A. H. Newton, J. Levine, M. Fox, and D. Long. 2007.
Learning Macro-Actions for Arbitrary Planners and Do-
mains. In Proc. of the 17th Int. Conf. on Automated Plan-
ning and Scheduling (ICAPS-07).
A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser and
M. Scheetz. 1999. Exploiting Competitive Planner Per-
formance. In Proc. of 5th European Conf. on Planning
(ECP-99).
M. Roberts and A. Howe. 2007. Learned Models of Perfor-
mance for Many Planners. In Proc. of ICAPS’07 Workshop
of AI Planning and Learning.
F. Wilcoxon and R. A. Wilcox. 1964. Some Rapid Approx-
imate Statistical Procedures, Lederle Laboratories.


