CABALA: Case-based State Lookaheads

Tomas de la Rosa, Angel Garcia Olaya and Daniel Borrajo
Departamento de Informatica, Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es, agolaya@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

We present in this work the CABALA system, a learning-
based planner submitted to the first learning track of the In-
ternational Planning Competition, (IPC-6). CABALA uses a
case-based strategy for ordering applicable actions of the re-
laxed plan when lookahead states are built during the search
algorithm. The lookahead strategy is one of the techniques
used to speed up heuristic planning when relaxed plans of
some domains are of good quality or at least contain most of
the actions that belong to the solution plan. However, this
technique has only been used in variations of best-first search
and it has not been exploited probably because applying ac-
tions of the relaxed plan in a wrong order leads to generate
lookahead states that do not help the search process. In this
work we enhance the lookahead technique using sequences
of abstracted state-transitions as an advise for building looka-
head states. Previous work has shown that these sequences
are useful for some benchmarks since they allow to reduce
the number of evaluations of the heuristic function. We ar-
gue that the same CBR advise used for ordering nodes can be
used for ordering actions in the lookahead state construction.

Introduction

At the sixth edition of the International Planning Competi-
tion (IPC-6) a learning track has been proposed to encour-
age the Al Planning community to develop different tech-
niques that can improve state-of-the-art in planning. Al-
though domain-independent planning has achieved consid-
erable improvements in the last decade, IPC-3 showed that
domain-dependent planners can significantly outperform the
current domain-independent techniques. The main issue
with domain-dependent knowledge is how to automatically
acquire this knowledge, so a planning system can improve
its performance after learning from experience. In this work
we present the basic ideas of CABALA , one of the partic-
ipants of the IPC-6 Learning Track. CABALA uses a case-
based strategy developed in (De la Rosa, Garcia-Olaya, &
Borrajo 2007) in order to decide the ordering of applica-
ble actions from the relaxed plan when lookahead states are
generated. The lookahead strategy introduced in the YAHSP
planner (Vidal 2004) uses the actions in the relaxed plan to
compute reachable states in order to speed up the search pro-
cess. This improvement is due to the reduction of the real
depth of the search tree which produces as a result less eval-
uations of the heuristic function. Since the computations of

the heuristic function spend most of the total planning time,
the lookahead strategy improves planning in terms of search
time. On the other hand, in some domains, applying ac-
tions of the relaxed plan in a wrong way can produce useless
lookahead states that do not help in the target of decreas-
ing the number of evaluations of the heuristic function. CA-
BALA produces a different construction of lookahead states,
because it tries to execute the action that replays the same
abstracted state transition of the learned sequence retrieved
according to a CBR approach (Aamodt & Plaza 1994). We
will present in this paper the system overview and a sum-
mary of techniques and algorithms used for the version sub-
mitted to the competition.

CABALA Overview

CABALA is part of the set of learning-based planners in-
tegrated with SAYPHI, a heuristic planner developed with
the aim of building different learning strategies on top of
it, using a similar philosophy architecture addressed within
PRODIGY (Veloso et al. 1995). For the version submitted to
the Learning Track, the CABALA system includes:

e SAYPHI Planner: A collection of heuristic search algo-
rithms that use an implementation of heuristic function
of the FF planner (Hoffmann & Nebel 2001). The collec-
tion of algorithms includes the Lookahead-BFS algorithm
used as the default one for CABALA

e CBR Adyvisor: A module for storing, merging and re-
trieving domain control knowledge in the form of typed
sequences, as used in (De la Rosa, Garcia-Olaya, & Bor-
rajo 2007).

e Incremental Trainer: An extension of the CBR Advi-
sor for generating the domain-dependent knowledge in a
incremental way using a given training set.

In the following section we will explain how the CBR
Advisor works and how the learned knowledge is used in
Lookahead-BFS.

CBR adyvisor overview

In CABALA, the domain-specific knowledge is stored as
cases, called typed sequences. A typed sequence is an ab-
stracted sub-state transition relative to an object type. A
typed sequence is formed by an ordered list of pairs (typed

sub-state, action to reach the state) which partially collects a
planning episode from an object instance perspective. So,
we say that this type of knowledge is object-centered or
type-centered. A typed sub-state is the set of all proper-
ties that an object has in a particular state. A property,
first introduced in the work of domain analysis in TIM (Fox
& Long 1998), is defined as a predicate subscripted with
the object position of a literal; e.g., on; is a property of
object blockA in the literal (on blockA blockB). In addi-
tion, an object sub-state is the set of the state literals in
which the object is present. Then, the set of object prop-
erties that forms the typed sub-state is computed from the
object sub-state. For instance, suppose we have the state
s1 =[(on blockA blockB) (ontable blockB) (clear blockA)
(holding blockC) ...]. Then, the object sub-state of blockA
would be [(on blockA blockB) (clear block A)]. This is gen-
eralized to (on; clear;) which is a typed sub-state of type
block. If the action stack(blockC, blockA) is applied in s,
the new object sub-state for blockA would be [(on blockA
blockB) (on blockC blockA)], thus the typed sub-state be-
comes (onj ongz).

The main idea of a CBR cycle is that past experience
is stored in a case base and when a new problem needs to
be solved, the most similar case is retrieved. Then, the re-
trieved case is adapted and reused to solve the new prob-
lem. CABALA obtains the experience from solved prob-
lems as follows: once a problem is solved, for each ob-
ject instance in the problem, a typed sequence is generated.
Each step in the sequence is created with the correspond-
ing object sub-state from the solution path. If we consider
U(S, o) the transformation function that obtains the typed
sub-state (properties of object o) from the state S, and a plan
P = {a,....a,}, then we generate a typed sequence as
Q = (U(0,8),0),...,(U(o,Sn),an) where state S; is the
resulting state of applying action q; to state Sj_;. Sequences
are grouped in the case base by domain types, so a new case
is inserted in the type of object from which it was generated.
If the object sub-state does not change when an action is ap-
plied, a no-op is saved to represent a void action from the
object perspective. A merge process verifies that equivalent
sequences are not repeated in the case base. We consider
that two sequences are equivalent when they only vary in
the number of no—op. Figure 1 shows a complete example
of a typed sequence generated from a solution plan in the
blocksworld domain. The typed sequence has one step more
because the typed sub-state of the initial state is included
without any action.

The next step in the CBR cycle is the retrieval. A typed se-
quence is retrieved for each object instance in the new prob-
lem. For this purpose we have a retrieval scheme that only
considers the first step of the sequence referred to the initial
state and the last step of the sequence referring to the goal
state. The system performs two matches to retrieve a se-
quence. The first one matches the typed sub-state generated
from the goals of the new problem, G, against the last step
of all sequences of the corresponding type. For the second
match the typed sequence generated from the initial state of
the new problem, I is matched against the first step of the
sequences resulting from the first match. Thus, if we con-

Initial State: (ontable A) (clear A)
(ontable B) (clear B)
(ontable C) (clear C)
Goals: (onAB)(onC A)
Plan Typed Sequence (Block A)
initial state (cleary ontabley), nil]
0: (PICKUP A) (holdingy), pickup)
1: (STACK AB) [(clear; ony), stack]
(
(

2: (PICKUP C) cleary ony), no—op]
3: (STACK C A) ony ong), stack]

Figure 1: A typed sequence example in the blocksworld do-
main.

sider an object o of type ¢ and Q = {(qo0,0),. .., (qn,an)}
an arbitrary typed sequence in the case base of type ¢, the
first match holds when U (G, 0) C ¢, and the second match
holds when ¢og C U(1,0).

Typed sequences are used during the search as control
knowledge that supports exploring decisions together with
the heuristic function. The search control is performed with
recommendations given by the retrieved sequences, which
are replayed while the search is advancing. We say that suc-
cessor node is recommended when it matches the next step
of a sequence retrieved for any object involved in the applied
action to reach the node state. Thus, we say that a child
node S’ achieved by applying action a’ is a recommended
node when k11 C U(S, 0;) where oj is the parameter (ob-
ject instance), j of the action a’ and k is the current step
number for the sequence retrieved for o;. The notion of rec-
ommended node is independent of the search algorithm, so it
can be used for different search control tasks like selecting,
pruning or ordering nodes. In CABALA these recommenda-
tions guide the generation of lookahead states as explained
in a further section.

Incremental Trainer

The incremental trainer is an extension to the CBR Advisor
developed for the CABALA version submitted to the compe-
tition. The underlying idea is that using subsets of problems
from the training set, we iteratively build case bases that are
validated with a test set. If one iteration improves a previous
iteration, the subset of problems are considered useful and
this subset is used to build the final case base.

The algorithm in Figure 2 shows the pseudo-code for the
incremental trainer. CABALA uses a training and a test set
in order to perform the incremental learning. This may
correspond to the bootstrap and the target distributions of
the problems given for the competition. The np parame-
ter is the number of training problems used for each itera-
tion and split_k is a constant for building additional prob-
lems (explained in detail in the next section). Function
populate_case_base isacall to the CBR Advisor when
it solves a set of problems and generates the case base from
these problems. The function quality metric com-
putes the proposed quality metric for the competition using
the test set. At the end of the algorithm the final case base is
built with the set of problems that belongs to iterations that

Cabala-Training (train_set, test_set, np, split_k)

train_set, test_set: training and test sets.
np: number of problems per iteration.
split_k: constant for splitting phase.

inc_train_set < prepare_split(train_set, split_k)
best_score = 0; learned_set = ()
while there are new problems in inc_train_set do
iter_set < next np problems in inc_train_set
populate_case_base(iter_set U learned_set)
if quality_metric(test_set, iter_set U
learned_set) > best_score then
learned_set «— iter_set U learned_set
best_score « quality_metric(test_set)
populate_case_base(learned_set)

Figure 2: Algorithm for incremental training of the case-
base.

improved the overall quality metric.

With the aim of having sufficient training problems, some
problems of the training set can be split into some new prob-
lem. Thus, we try to guarantee that at least a distribution of
small problems can be solved with a good plan quality, so
the stored cases are of good quality. The split_k param-
eter represents the estimated heuristic distance for solving
one goal, and its value is used for building the new prob-
lems. The constant determines the number of goals of the
new problems, and the number of problems built as shown
in the next equations, where [is the initial state and G the
goals of the seeding problem.

num_new_goals = (split_k = |G|)/hpr(I) (1

num_new_problems = |G|/num_new_goals (2)

The function prepare_split inthe incremental trainer
code builds the list of problems to be solved. It adds first
all problems in the training set and then, it generates new
problems for those problems that the heuristic value of the
initial state exceeds the split_k. The set of goals of a new
problem are randomly selected from the set of goals of the
seeding problem.

Case-based Lookahead Search

In this section we will explain the algorithm used by CA-
BALA in the competition. It is based on a modification of a
best-first search (BFS) in which each node expansion gener-
ated a lookahead state that is inserted at the beginning of the
open list. Due to scalability reasons we skip the rest of node
evaluations since in previous experiments we saw that pre-
ferring the lookahead state could lead to a solution in most
benchmarks. Thus, we define an artificial evaluation func-
tion as:

F(n) = 0 if n is a lookahead node
| depth(n) otherwise

We could substitute the function depth(n) by hpr(n) for
using a standard heuristic evaluation of nodes. This sub-
stitution in particular produces analogous behavior of the
BES lookahead search of YASHP (Vidal 2004) in domains in
which it is always possible to build a lookahead node from
an arbitrary state.

CABALA focuses on the quality metric of the competition,
so after finding a solution, we continue to search for better
solutions pruning nodes that exceed the best cost found so
far. Thus, CABALA algorithm could be interpreted as looka-
head BFS with a Branch & Bound technique for refining
solutions.

Rather than trying to apply as most applicable actions as
CABALA can, the idea of case-based lookahead is to decide
in which order the applicable actions of the relaxed plan may
be applied.

Figure 3 shows the algorithm for computing case-based
lookahead nodes. From the applicable actions of the re-
laxed plan, CABALA selects the action matching more cases.
Then, applicable actions are recomputed and another action
is selected an so on. In the standard algorithm for comput-
ing lookahead states, actions are inserted into the applicable
list as they appear, but in the case-based approach, the se-
lected applicable action must match one or more sequences
in their current step. The implemented algorithm keeps track
of visited states to avoid generating lookahead nodes with
repeated states. The arg variable represents the problem ob-
jects used as parameters of the applicable actions.

3)

Case-base Lookahead State (S, RP)

S: the current state.
RP: relaxed plan of S.

lh < S
while (C — applicable(lh, RP)) # () do

for each cin C' do

for each arg in cdo
if apply(c, [h) matches case_pointer(arg) then
matching[c] = matching[c] + 1

next « argmax(matching|i]),i € C

lh —apply(c, Lh)
return [h

Figure 3: Algorithm for computing case-based lookahead
states

Conclusions and Future Work

We have presented the CABALA system, a competitor in the
first version of a Learning Track within IPC. Our system was
submitted focusing on two main goals.

e Showing a CBR approach as an alternative technique for
ordering applicable actions of the relaxed plan in a looka-
head search.

e Verifying the possibility of finding refined solutions af-
ter the first solution is found, using a branch and bound
strategy, also guided by CBR recommendations.

We are currently working on some extensions to the sys-
tem. We have noticed that in some domains EHC with
lookahead states obtains better results than our current algo-
rithm. This confirms that case-based recommendations are
suitable for different algorithms, but on the other hand, this
reveals us that we need to research on algorithm diversity
to determine a more robust algorithm for the most available
benchmarks.

Acknowledgments

This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05. We want to thank Planning
and Learning Group members that helped us in any kind of
work related to the IPC Learning Track.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. A Communications 7, n0.1:39-59.

De la Rosa, T.; Garcia-Olaya, A.; and Borrajo, D. 2007.
Using cases utility for heuristic planning improvement. In
Weber, R., and Richter, M., eds., Case-Based Reasoning
Research and Development: Proceedings of the 7th Inter-
national Conference on Case-Based Reasoning, 137-148.
Belfast, Northern Ireland, UK: Springer Verlag.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:317-371.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253-302.

Veloso, M. M.; Carbonell, J.; Pérez, M. A.; Borrajo, D.;
Fink, E.; and Blythe, J. 1995. Integrating planning and
learning: The PRODIGY architecture. Journal of Experi-
mental and Theoretical Artificial Intelligence 7(1):81-120.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the Fourteenth International

Conference on Automated Planning and Scheduling, 150—
160.

