Sequential satisficing track

C³

M. Ramírez, N. Lipovetzky, H. Geffner

- two-tiered forward state space search
- Ist tier: incomplete backtracking
- Ind tier: WA* using cost-sensitive hadd
- novelty in 1st tier: powerful structural pruning scheme based on inference along possible causal chains

FF(*h***a)**

E. Keyder, H. Geffner

- forward state space search with delete relaxation heuristic, a la HSP and FF
- extracts relaxed plan using best supports for each atom encoded by h_a
- FF's framework: EHC, helpful actions

Plan-A

Q. Lv, Y. Chen, R. Huang

- SAT-based planner optimizing action costs instead of makespan!
- uses DPLL-opt, a SAT-constrained optimization solver
- branch-and-bound pruning strategy
- continues after first feasible layer

Temporal satisficing track

CPT3

V. Vidal

- optimal temporal planner based on POCL and constraint programming
- makespan optimization via branch and bound

Temporal Fast Downward

G. Röger, P. Eyerich, R. Mattmüller

- temporal and numeric extension of Helmert and Richter's Fast Downward
- forward search in space of time-stamped states
- uses an extended version of the context-enhanced additive heuristic of Helmert and Geffner

Divide-and-Evolve 1/2

J. Bibai, P. Savéant, M. Schoenauer, V. Vidal

- decomposes problem into ordered subgoal collection
- candidate subgoal sequences generated by evolutionary algorithm
- subproblems solved consecutively and compressed into global solution using CPT

FF(h_{sa})

- forward state space search with delete relaxation heuristic, a la HSP and FF
- h_{add} modified to propagate sets of actions representing relaxed plans
- better relaxed plans than h_a , but costlier to compute
- ► FF's framework: EHC, helpful actions

SGPlan 6

- partitions planning problem into subproblems by parallel decomposition
- identifies partitioning attributes, multivalued formulation to exploit localities
- modified Metric-FF for subproblems
- resolves inconsistencies using the Extended Saddle Point Condition

Divide-and-Evolve 1/2

J. Bibai, P. Savéant, M. Schoenauer, V. Vidal

- decomposes problem into ordered subgoal collection
- candidate subgoal sequences generated by evolutionary algorithm
- subproblems solved consecutively and compressed into global solution using CPT

TLP-GP

- temporally expressive planner
- backwards search in planning graph extended with temporal labels
- performs planning and scheduling at the same time
- uses MathSat solver to verify DTP
- provides a floating solution plan

International Planning Competition 2008 – Deterministic Part Participating Planners

E. Keyder, H. Geffner

C.-W. Hsu, B. Wah

F. Maris, P. Régnier

DTGPlan

- novel anytime algorithm
- A* search in hierarchically extended abstract search space
- retrieves sub-plans directly and greedily from DTGs via causal analysis
- multiple heuristics to further boost search beyond the abstract space

LAMA

S. Richter, M. Westphal

R. Huang, Y. Chen, W. Zhang

- heuristic forward state space search
- combines popular FF heuristic and novel landmark heuristic
- based on Helmert's Fast Downward
- action costs incorporated into heuristic
- cost-sensitive search algorithm: iterated WA^*

Baseline planner

- throws away action costs
- ▶ runs Hoffmann's FF

SGPlan 6

C.-W. Hsu, B. Wah

- basic search strategy as in sequential satisficing track
- post-processing to annotate sequential plans with time information

Baseline planner

- removes temporal problem aspects
- runs Hoffmann's Metric-FF
- schedules the sequential plan with a simple critical path algorithm

CFDP

Gamer

Gamer

Planners that did not participate

- sequential optimization track: net benefit optimization track:
- sequential satisficing track: temporal satisficing track: temporal optimization track: net benefit satisficing track:

Sequential optimization track

S. Grandcolas, C. Pain-Barre

based on FDP search procedure (IDDFS strategy)

memorizes subproblem plans + costs starts with plan optimal in the number of actions, then increases length

stops when it proves that longer plans are more costly

S. Edelkamp, P. Kissmann

bidirectional symbolic BFS and symbolic A^* in the state space

heuristic: symbolic perimeter search complete search algorithm based on

symbolic cost matrix

multi-actions for conditional effects generates SAS⁺ encoding

Mips-XXL

S. Edelkamp, S. Jabbar

external breadth-first branch and bound

search in the state space pruning technique on sequential total cost to terminate search with

intermediate results recorded on disk delayed duplicate detection based on external sorting

Net benefit optimization track

S. Edelkamp, P. Kissmann

symbolic cost-first branch and bound search with fixpoints on 0-cost actions several novel pruning techniques to terminate search with intermediate results recorded on disk preferences represented as BDDs generates SAS⁺ encoding

- 23 registered, 9 submitted
- **19** registered, **8** submitted
- **12** registered, **6** submitted
- 4 registered, 1 submitted
- **11** registered, **1** submitted
- 6 registered, 3 submitted

CO-Plan

N. Robinson, C. Gretton, D. N. P

- two-phase cost-optimal planner phase I: SAT-based planner with modified RSat backend to find a
- minimal-cost step-optimal plan
- phase II: forward search in state space to find cost-optimal plan, bounded by cost of plan identified in phase I

HSP[∗]

heuristic state space search (A*)

- heuristic: variant of additive h^2
- ▶ uses *regression* search

Upwards

A. Coles, A. S

- performs regression search within a SAS⁺ state space
- depth-first branch & bound, with 30 seconds of LPG to find an upper bou
- mobile analysis: abstract route plann
- tunnel macros, variable symmetries: further reduce explored search space

HSP^{*}

- trivial reduction to min cost planning: enumerate goal sets, find optimal pla for each (using regression, IDA* & a variant of additive h^2)
- only improvement: switch between g sets to always work on "most promising goal set \rightsquigarrow first plan optimal

	CPT3
D. N. Pham r h a e space led by the I	 V. Vidal optimal temporal planner based on POCL and constraint programming makespan optimization via branch and bound for optimal sequential planning, force total ordering of actions and model action costs as durations
P. Haslum *)	 HSP* P. Haslum heuristic state space search (A*) heuristic: variant of additive h² uses <i>forward</i> search
	Baseline planner
s, A. Smith hin a h 30 er bound planning etries: space	 brute-force uniform cost search (A* with h = 0) uses LAMA's search code
	Mips-XXL
P. Haslum nning: nal plan * & a een goal romising"	 S. Edelkamp, S. Jabbar <i>external breadth-first branch and bound search</i> in the state space pruning technique on sequential total cost to terminate search with intermediate results recorded on disk delayed duplicate detection based on

external sorting