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Abstract
In this paper, we will describe the planner UPWARDS, com-
peting in the sixth international planning competition. Our
primary focus will be on the novel contributions of the plan-
ner: in particular, the application of symmetry breaking, mo-
bile analysis and tunnel macros in sequential cost-optimal
SAS+ planning. A brief outline of UPWARDS itself is then
provided.

1 Introduction
When performing optimal planning using state-space search,
one of the key barriers to scalability is the number of states
explored to find a provably optimal solution. The conven-
tional approach to ameliorating this problem is to focus on
the construction of an admissible heuristic: one which never
over-estimates the distance from a state to the goal. Used
in conjunction with a standard search algorithm (A*, IDA*,
...), this forms the basis of a planner. However, as dis-
cussed in (Helmert & Röger 2008), using a heuristic is not
a panacæa: even with near-perfect heuristics, the number of
states explored by standard heuristic search algorithms is a
hindrance to scalability. Simply, a heuristic value alone can-
not encapsulate all the guidance needed to plan efficiently.

In this paper, we pursue taking steps beyond heuristics
when performing cost-optimal SAS+ planning, proposing
several algorithm-level techniques. First, we consider how
to infer and exploit symmetries, moving beyond PDDL entity
symmetry (Fox & Long 1999) to SAS+ variable symmetry.
Our approach carries negligible overheads, per-node, dur-
ing search. Second, we consider the role of mobile generic
types (Long & Fox 2000), and how such analysis can be
exploited but without sacrificing optimality guarantees. Fi-
nally, we generalise the concept of ‘Tunnel Macros’ for use
in domain-indepent planning, an idea previously used in a
bespoke Sokoban solver (Junghanns & Schæffer 1997). Our
competition planner, UPWARDS, employs these techniques
in a regression search setting, but with minor modifications
they are all suitable for use in forward-chaining search. Fur-
ther, by being defined for use with SAS+, they are of po-
tential use alongside state-of-the-art heuristics for optimal
planning (Helmert, Haslum, & Hoffmann 2007).
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2 Definitions
For a full definition of SAS+ planning, we refer the reader
to the literature (Helmert 2006b; Bäckström & Nebel 1995).
Briefly, a we define a SAS+ cost-optimal planning problem
as a tuple Π = 〈V,O, s0, s?, cost〉 where: V is a set of vari-
ables, each with corresponding domains Dv; O is a set of op-
erators, each with a set of prevail conditions and pre post
conditions; s0 is the initial state; s? is the goal (variable–
value pairs which must hold true in any goal state); and cost
is a function denoting the cost, cost(o), of each operator
o ∈ O. We assume costs are fixed, non-negative values.

The task, in regression planning, is to find a sequence
of operators through which s? can be regressed in order to
reach the initial state. A state s can be regressed through an
operator o subject to:

∀(vn = c) ∈ prevail(o) s′[n] ∈ {c ∪ undef}
∀(vn = (p→ q)) ∈ pre post(o) s′[n] ∈ {q ∪ undef}
If s is regressed through o, a state s′ is reached, where:

s′ = (s \ {vn = q | vn = (p → q) ∈ pre post(o)})
∪ prevail(o) ∪ {vn = p | vn = (p→ q) ∈ pre post(o)}
The problem, then, is to find a sequence of operators

through which s? can be regressed to lead to a state s ⊆ s0,
and reversing this sequence forms a solution plan.

3 Symmetry Breaking
Symmetry breaking is a powerful tool within combinato-
rial search; it preserves completeness and optimality, whilst
pruning provably equivalent areas of the search space. In
problems where symmetry can be discovered effectively,
and at reasonable cost, symmetry breaking can lead to sub-
stantial improvements in performance.

3.1 Background
In (Fox & Long 1999), Fox and Long introduced the no-
tion of functional symmetry in PDDL planning (Fox & Long
2003). In PDDL, the definition of a problem is split into a
domain and a problem file: the former captures the structure
of the problem; the latter the instance at hand. The domain
specifies entity types, abstract action schemata, predicates
and constant entities. The problem specifies named enti-
ties of each type, propositions denoting the initial state (fol-
lowing the predicates defined in the domain), and the goal
propositions. Under these semantics, two entities can be de-
fined to be functionally symmetrical as follows:



Definition 3.1 — PDDL Functional Symmetry
2 entities a, b are functionally symmetrical in a state s iff:

1. a and b are of the same type
2. Neither a nor b is a constant appearing in the precondition

or effects of any action schema
3. a and b are placed in equivalent propositions in the cur-

rent state. Taking a proposition to be defined by a tuple
〈name, < parameter list >〉:
{〈name, < e0..n >, a,< en+1..m >〉 ∈ s}

≡ {〈name, < e0..n >, b,< en+1..m >〉 ∈ s}
4. Similarly, a and b are placed in equivalent propositions in

the goal state.
With this definition one can build symmetry groups,

groups of pairwise functionally symmetrical entities. Within
such groups, labels on actions are essentially arbitrary—they
are not usefully distinguishable. Hence, by characterising
this notion of symmetry formally, we can use it as a basis
for pruning effectively equivalent action choices. For full
details, we refer the reader to (Fox & Long 1999), but to
summarise: when expanding s, with applicable operators Ω,
we reach successors, one for each o ∈ Ω. Given the effects
of operators upon entities, we can prune redundant members
of Ω: those whose outcomes are effectively equivalent. For
instance, if ten balls are symmetrical, we need only keep the
operators in Ω corresponding to manipulating a single ball.

3.2 Symmetry in SAS+
Our first contribution is a symmetry detection mechanism
for SAS+. At the core of the symmetry definitions discussed
so far is the notion of entities, and their presence in propo-
sitions. In SAS+, we do not have these: we have only vari-
ables, and their values, and it is therefore non-trivial to see
how existing symmetry can be exploited in SAS+. Key to
the definition of functional symmetry in PDDL is a notion
of function, inferred from types, facts and actions. We shall
begin by seeking analogues for each of these.

First, let us consider types. A PDDL type defines, at an
abstract level, the capabilities of an entity. The analogue to
this, within SAS+ is the Domain Transition Graph (DTG)
(Helmert 2006b). A DTG is a directed graph, denoting the
paths between the values a variable can hold. For each vari-
able v, the domain transition graph DTG(v) contains a ver-
tex for each possible value of v (i.e. each of D(v), and addi-
tionally one for undef ). Edges are defined according to O:
for each operator o with a pre post condition 〈v, pre, post,
DTG(v) contains an edge pre → post, labelled with o.
Thus, the topology of a variable’s DTG can be thought of
characterising its type. For example, within a simple logis-
tics problem, a variable denotes the status of each package:
either at a location, or in a named truck. Its DTG has a
characteristic topology: no transitions between ‘at location’
values; and no transitions between ‘in truck’ values.

Ignoring labels on edges, the problem of determining
whether two DTGs are symmetrical is that of graph iso-
morphism (McKay 1981). If an isomorphism can be found,
a mapping is defined from the vertices in one DTG onto
the vertices in another. Let us consider, by way of exam-
ple, the two DTGs A and B denoted in Figure 3.2 (two
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Figure 1: Package Domain Transition Graphs

packages, in a problem with a single truck). If we denote
their vertices a0..an and b0..bn, a mapping from B onto A,
mappingB→A(bi), defines the vertex in A that corresponds
to each bi. The function is one-to-one: each vertex of B
maps onto a single vertex in A, and vice-versa. For the ex-
ample shown, the mapping will consist of b1 ↔ a4, and a
one-to-one mapping for the other vertices. As the vertices
correspond to variable values, the mapping can then be used
to map values of b onto values of a, with mappingB→A(bi)
dictating the value of a symmetric to b = i.1

In this manner, graph isomorphism appears to be an ef-
fective tool for detecting variable symmetry. However, as
stated, this is only the case if labels on edges are ignored.
Clearly, this is not feasible: the labels denote operators, with
prevail conditions and pre post involving it and other vari-
ables. Intuitively, returning to Figure 3.2, the edges corre-
spond to loading/unloading packages from the truck at vari-
ous locations. These will have a specific prevail condition
that the truck must be at the appropriate location. Hence,
although the DTGs may suggest we can permute some ver-
tices arbitrarily when constructing a mapping, we cannot:
we must consider the implications of the mapping decisions
made. Further, we must also consider operators outwith the
DTGs: the DTG for a variable v contains only operators
which modify the value of v; not those in which v is present
within a prevail condition. To capture these, along with the
variables within the DTG, for each variable v we can define
its relevant operators ro(v) as:

ro(v) = {o ∈ O | ∃〈v, k〉 ∈ prevail(o)
∨ ∃〈v, p, q〉 ∈ pre post(o)}

With these, we can then perform augmented graph iso-
morphism detection: both the topology and the operator
implications of the mapping must hold. We can apply a
mapping mappingB→A(bi) to an operator by modifying its
prevail and pre post conditions accordingly:
• replace a prevail 〈b, k〉 with 〈a, mappingB→A(bk)〉;
• replace a pre post 〈b, p, q〉 with 〈a, mappingB→A(bp),

mappingB→A(bq)〉;
By modifying ro(b) according to these rules, if the result-

ing operator set is equivalent to ro(a) under the mapping
found, then the two variables are symmetrical: a mapping
has been found which reflects the DTG topology and which
assuages any interactions with other variables. Importantly,

1Note here that in an automatic translation to SAS+, the numeri-
cal domain values (and hence DTG vertex labels) are arbitrary, and
do not correspond to the original locations.



this augmented isomorphism detection on domain variables
can be performed as a static pre-processing step, with min-
imal overheads incurred during search: it records potential
symmetries, and whether or not variables are actually sym-
metric can be determined with minimal cost at each state.

3.3 Use of Symmetry in Regression Search
Having identified potential variable symmetries, we can ex-
ploit this information during regression search. Here, as we
are aiming to find a path back from a state s to the initial state
s0 we must first split potentially symmetric variables based
on their values in s0. If two variables a, b are potentially
symmetric, but s0[a] does not equal mappingB→A(s0[b]),
then in each state when regressing towards s0 we cannot
consider a and b to be symmetrical.

What remains is to exploit symmetry at each state s. Here,
we use the mapping: for potentially symmetric variables a, b
if s[a] = mappingB→A(s[b]) then the variables are cur-
rently symmetrical. This can be ascertained with minimal
overheads. During state expansion, the recognised symme-
tries can then be used to reduce the branching factor. Refer-
ring to Section 2, a state s is expanded by finding operators
to achieve the variable values in that state. If we have a pair
of symmetric variables a, b, we only need consider operators
to achieve the value of one of them.

4 Generic Types: Mobiles
Generic types, introduced in TIM (Long & Fox 2000), en-
capsulate commonly occurring idioms within planning prob-
lems. Perhaps one of the most common of these is the mo-
bile type. A mobile object can move (unhindered) over a
map of locations, subject to certain conditions holding. For
instance, in Driverlog, if a driver is in a truck, then the
truck can move freely over its location map. In Hybrid-
STAN (Fox & Long 2001), this was used to safely abstract
move operators: any reference to these were removed in a
pre-processing step, and once a solution had been found to
this reduced problem, the missing operators were inserted.

In the IPC5 version of Downward (Helmert 2006a), the
first steps were taken towards incorporating such ideas into
a SAS+ setting, using a technique known as safe abstrac-
tion. There is a strong correlation between SAS+ variables
and mobile generic types: a mobile generic type can be rep-
resented by a single SAS+ variable, with its map being re-
flected in the variable’s DTG. In Downward, two criteria de-
termine whether a variable v can be safely abstracted, and as
in HybridSTAN if these are met the variable is abstracted out
of the problem and the missing operators inserted post-hoc:

Definition 4.1 — Safe Abstraction
A variable v can be safely abstracted if:
• DTG(v) can be wholly traversed by applying operators

with no prevail conditions and whose pre post condi-
tions affect only v;

• the DTG is strongly connected: the vertex s0[v] is reach-
able from all vertices in the DTG.
The limitation of safe-abstraction is that unlike TIM, it

cannot handle prevail constraints on the movement oper-
ators. Also, as in HybridSTAN, the post-hoc insertion of

missing operators into a solution plan loses optimality. In
UPWARDS we address these two issues by introducing a new
technique corresponding to the TIM mobile type — condi-
tional abstraction — and incorporate the abstraction infor-
mation into search to preserve optimality, rather than using
it only in post-processing.

We define conditional abstraction as follows:

Definition 4.2 — Conditional Abstraction
A variable v can be conditionally abstracted, subject to

the conditions v′ = k, if considering only the operators
in DTG(v) with prevail conditions 〈v′, k〉 yields a DTG
DTG〈v′,k〉(v) which meets the criteria for Safe Abstraction
(Definition 4.1).

A variable can have a number of conditional abstractions
if there are several prevail conditional paths. Indeed, it can
have a conditional abstraction whose condition is null; i.e.
safe abstraction is a special case of conditional abstraction.
A variable v is wholly conditionally abstracted if the condi-
tional DTGs for v, between them, all of the operators affect-
ing v. In this case, we can eliminate choices of the operators
changing v from search. We proceed in three phases:
1) Operator Path Preprocessing. For each conditional ab-
straction of v we use the Floyd-Warshall all-pairs shortest
path algorithm to give cost-optimal operator paths between
values of v. This gives us operator paths, and costs, to attain
values of v subject to a condition holding.
2) Implicit Operator Selection. During search, operators
with pre post conditions involving v are never considered
explicitly. Once we have a state s in which an abstraction
condition v′ = k holds, we assume v can hold any value; not
just its current value, s[v]. When generating a successor s′,
through applying an operator o, if a value of v other than s[v]
is needed (as a prevail or as a post condition), the necessary
operators are determined according to the Floyd-Warshall
lookup table. The resulting plan segment from s′ to s then
consists of o followed by this operator sequence.
3) Optimal Goal Jumping. We may reach a state s where
the operators from s0[v] to s[v] are implicit for one or more
variables v. In this case, we apply the necessary operators
to s, leading to a state s′ ⊆ s0 and hence a solution plan.
If we did not consider this case, we would lose complete-
ness: for variables that are wholly abstracted with only a
null condition, we would never otherwise consider adding
their final operators to reach s0. To preserve optimality, we
make two further considerations. First, if there are several
conditional abstractions over a variable v, we take the path
with the lowest cost. Second, if there is a unsatisfied con-
ditional abstraction, and which potentially could lead to a
lower-cost goal jump, we consider the normal successors to
s also rather than only a goal jump; thereby preserving the
opportunity to achieve this other conditional path.

With this technique, given we are performing cost-
optimal sequential planning, it is important to note the cost
of implicit operator sequences. Given we have cost-optimal
paths from the Floyd-Warshall algorithm, we can rely on the
optimality of the implicit operator sequences. Then, the cost
of regressing through o in s becomes cost(o), plus the cost
of the implicit operator sequences.



2−0

0−1 1−2

0

1

2

T

Figure 2: DTG for a Driver

5 Tunnel Macros
Tunnel Macros were first introduced as part of a Sokoban
solver (Junghanns & Schæffer 1997). Consider a grid-based
maze: here, ‘tunnels’ arise when a tract of empty squares has
blocked squares on each side. Upon entering such a tunnel,
assuming the points along it bear no significance, the only
sensible choice is to walk to the end. Retreating necessarily
results in a cycle, returning to from whence one came. The
same is true for each point along the tunnel: the only sen-
sible option is to carry on until the end, skipping heuristic
evaluation or decision making. Tunnel Macros capture this
concept: entering a tunnel results in being at the other end.

Our next contribution is to demonstrate how this idea
can be generalised for use within planning. To achieve this
we identify analogues to tunnels within the variable DTGs.
Consider by way of example Figure 2, the DTG for a Driver-
log driver. Drivers have the capability to be in a truck or at a
location. The construction of Driverlog problems, following
the format of IPC3, produces problems with major locations
(here designated 0,1,2) between which trucks can drive. Be-
tween these, path locations are added ((0-1), (1-2), (2-0)),
through which drivers can walk to reach adjacent major lo-
cations. In SAS+, this results in the DTG shown: a driver
can be at a major location, a path location, or in a truck (T).

Now consider a state in search, s, in which s[d] = 1. If s
is regressed through the operator walk d 0-1 1, we reach
a state s′ where s′[d] =(0-1). This new value is entirely
uninteresting: no other variable depends upon it. Returning
to 0 would be cyclical, so the only reasonable option is to
immediately regress through walk d 0 0-1. Hence, path
locations are analogues to tunnels. These principles can be
generalised to any SAS+ variable, subject to certain criteria:

Definition 5.1 — Tunnel Macro
If a state s is regressed through an operator o, with prevail

conditions p and a single pre post condition 〈v, pre, s[v]〉,
a state s′ is reached where s′[v] = pre. If the following
conditions hold:

1. No operator has a prevail condition 〈v, pre〉;
2. All operators with pre post conditions of the form
〈v, k, pre〉 have no other pre post conditions; and, fur-
ther, all have prevail conditions c ⊆ p. We denote these
operators tunnels.

We can regress s′ through each of the operators t ∈ tunnels,
and then discard s′. This leads to states s′′, one for each
t. This process can then be applied recursively, to each s′′,
until the criteria no longer hold and the process terminates.

In the Driverlog example, only a single state s′′ was
reached, that with s[d] = 0, and recursion terminated here:

〈d, 0, t〉 is a pre post condition of board-truck t d 0.
In general, the DTG tunnels may fork leading to a number
of possible tunnelled outcomes. By applying recursion and
considering each operator in the set tunnels we handle these
cases, leading to many different eventual states s′′.

6 Upwards
These techniques are implemented in our planner UP-
WARDS. UPWARDS works in two phases. First, FF (Hoff-
mann & Nebel 2001) is used to find a starting plan. This is
used to determine an upper-bound ub on plan cost: we know
the the cost of a solution plan is at most that of the plan
found by FF. Then, sequential cost-optimal regression is
performed, using the depth-first branch-and-bound (DFBB).
The upper-bound for DFBB is first set to ub, and as search
proceeds, the bound ub is tightened. Two heuristics are used:
for pruning, an admissible heuristic based upon (Haslum,
Bonet, & Geffner 2005); for branch ordering, FF’s relaxed
planning graph (RPG) heuristic. Once search has completed,
we return the best plan found: either that of FF, or if quality
was improved beyond ub, that found by UPWARDS itself.
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