
MIPS-XXL: Featuring External Shortest Path Search for Sequential Optimal
Plans and External Branch-And-Bound for Optimal Net Benefit ∗

Stefan Edelkamp and Shahid Jabbar
Faculty of Computer Science

TU Dortmund, Germany
{stefan.edelkamp,shahid.jabbar}@cs.uni-dortmund.de

Abstract
For large planning problems, the size of the state space can
easily surpass the limits of main memory. External-memory
algorithms exploit available disk space storing large state sets
in files. In this paper, we describe changes to existing set-
based exploration algorithms in MIPS-XXL that we have
implemented to participate in IPC-6. Thereby, we describe
changes for single-source shortest path search and for han-
dling net-benefits.

Introduction
Search algorithms and their variants, play an important role
in many branches of computer science. All use duplicate de-
tection in order to recognize when the same node is reached
via alternative paths in a graph. This traditionally involves
storing already-explored nodes in random-access memory
(RAM) and checking newly-generated nodes against the
stored nodes. However, the limited size of RAM creates a
memory bottleneck that severely limits the range of prob-
lems that can be solved with this approach. Although many
clever techniques have been developed for searching with
limited RAM, all eventually are limited in terms of scalabil-
ity, and many practical graph-search problems are too large
to be solved using any of these techniques.

Over the past few years, several researchers have show
that the scalability of graph-search algorithms can be dra-
matically improved by using external memory, such as disk,
to store generated nodes for use in duplicate detection. How-
ever, this requires very different search strategies to over-
come the six orders-of-magnitude difference in random-
access speed between RAM and disk.

Compared to the virtual memory management of the op-
erating systems, search algorithms that exploit the memory
hierarchy can lead to substantial speedups. These algorithms
are more informed to localize the future memory accesses.
Such algorithms are analyzed on External Memory (EM)
model for their I/O complexities rather than on von Neu-
mann architecture (Aggarwal and Vitter 1988). The EM
Model consists of a single processor, a small internal mem-
ory that can hold up to M data items, and an unlimited sec-
ondary memory. The size of the input problem (in terms of

∗Thanks to DFG for support in ED 74/4.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the number of data items) is abbreviated by N . Data is trans-
fered between the internal memory and the disk in blocks
of sizes B. Only the number of block reads and writes are
counted, computations in internal memory do not incur any
cost. In the EM Model, the available amount of external
memory is infinite.

In this paper, we mainly consider optimal STRIPS plan-
ning (Fikes and Nilsson 1971) with costs as proposed for one
track in the sixth international planning competition IPC-6,
even though metric quantities are handled by our planner.
For a given planning problem P = (S,A, I,G, C), the task
is to find a sequence of actions a1, . . . , ak ∈ A from I to
G with minimal

∑k
i=1 C(ai). We assume discrete costs and

that the highest action cost is bounded by some constant C.
Later on, we look at preferences in form of soft constraints
and optimal planning for net-benefits.

External Shortest Paths
The earliest reference1 to a disk-based Breadth-First Search
(BFS) dates back to Munagala and Ranade’s algorithm
(1999) for exploring an explicit graph (graph provided in
the form of adjacency lists). They proposed to represent
each BFS-layer with a buffered file. Since, a hash table for
large graphs cannot fit in the main memory, they proposed a
layered duplicate removal method based on disk-based sort-
ing and set subtraction. For implicit graphs (provided in the
form of an initial state and a set of transformation rules),
the algorithm was adapted and termed as delayed duplicate
detection for frontier search by Korf (2003).

In large-scale optimal planning on graphs where costs are
associated with actions, a simple EM-BFS cannot guarantee
that the first plan found is an optimal one. A natural choice is
to adapt the famous single-source shortest-path algorithm of
Dijkstra (1959) for External Memory setting. The main data
structure used by Dijkstra’s algorithm is a priority queue.
For an EM Dijkstra’s algorithm on large implicit graphs, we
propose to simulate the priority queue through a set of files.
Let Open[i] be the set of states reachable from the initial
state through a shortest path of length i. Each Open[i] is
represented by a file on the hard disk. When active (being

1There is some earlier work by (Stern and Dill 1998) but this is
not analyzed in the EM Model.

Algorithm 1 External Memory Shortest Path Algorithm
Input: P = (S,A, I,G, C)
Output: Optimal solution path, if exists; error otherwise.

Open[0]← I
for all f = 0, 1, 2, . . .

Open[f]← SortAndRemoveDuplicates(Open[f])
for all l = 0, . . . , f − 1

Open[f]← Open[f] \ Open[f − l]
if (Open[f − C] ∪ . . . ∪ Open[f] = ∅)

return ”Exploration completed, no plan found”
if (Open[f] ∩ G 6= ∅)

return ConstructPlan(Open[f] ∩ G)
for all i = 1, . . . , C

Succi ←
⋃

a∈A,C(a)=i{v ∈ Γ(u, a) | u ∈ Open[f]}
Open[f + i]← Open[f + i] ∪ Succi

read or written to), a small memory buffer is also associated
with the set Open[i].

The external shortest-path search procedure is imple-
mented in Algorithm 1. File Open[0] is initialized with
the initial state. Unless the goal is reached, we iteratively
choose the next f -value from teh priority queue, such that
Open[f] 6= ∅. For each a ∈ A with C(a) = i the succes-
sor function Γ(u, a) is applied to all states u ∈ Open[f] to
generate a set of states reachable with cost f + i. All such
states are collected in the state set Open[f + i]. Before ex-
panding a state set, we need to remove all the states that have
previously been expanded from Open[f]. This step is done
in two phases. First, Open[f] is sorted through an external
sorting algorithm, to bring all the duplicate states adjacent
to each other. The set is then scanned to remove all the ex-
tra copies of a state. In the second phase, all the previously
expanded state sets Open[0] . . . Open[f − 1] are subtracted
from Open[f], resulting in Open[f] to be duplicates-free.

As actions with a cost value of zero are allowed in the
domain definition, the above mentioned algorithm has to
incorporate the generation of successors in the same file.
We chose to adapt the same approach as proposed for the
symbolic planner, MIPS-BDD. Upon encountering an action
with a zero cost, we successively apply all the zero-cost ac-
tions on the successors until a fix-point is reached. This step
results in all states collected in a set that are reachable by a
non-zero-cost action and applying one action with non-zero
cost followed by a sequence of zero-cost actions.

Locality in Planning Domains

For undirected graphs, Munagala and Ranade (1999) sug-
gested that it is sufficient to subtract previous two lay-
ers to remove all the duplicates. For general directed and
weighted graphs though as we see in optimal STRIPS plan-
ning, the sufficient number of layers needed to subtract is
dependent on a property of the graph called locality. Let
Layer(u) be the correct total cost layer for a node u and
Γ(u) = ∪a∈AΓ(u, a) be the successors of a state u. The
locality of a directed graph G with a weight function C is

Total−Cost

Steps

Figure 1: Breadth-First and Cost-First Branch-and-Bound
Layers.

defined as

localityG = max
u,v s.t.v∈Γ(u)

{Layer(u) + Layer(v) + C(u, v)}

For breadth-first search graphs organized wrt. total cost,
the locality determines the number of previous layers that
need to be subtracted to guarantee that no node is expanded
twice. Figure 1 illustrates that the search space is stretched
along the benefit (files that are generated in the search pro-
cess are filled with states, goal states are highlighted with a
second circle).

This band of layers is usually termed as Duplicate De-
tection Scope and is the basis of the following lemma due
to (Zhou and Hansen 2006). As the original proof in (Zhou
and Hansen 2006) is not rigorous, we provide an alternative
one and extend it to general weighted graphs.
Lemma 1 (Locality Determines Duplicate Detection
Scope) In a directed and weighted graph G, the number of
previous layers of a breadth-first search graph that need to
be retained to prevent duplicate search effort is equal to the
localityG.

Proof: Let us consider two nodes u and v, with v ∈ Γ(u).
Assume that u has been expanded for the first time, gen-
erating the successor v which has already appeared in the
layers 0, . . . , Layer(u) − localityG implying Layer(v) ≤
Layer(u)− localityG. We have

localityG ≥ Layer(u)− Layer(v) + C(u, v)
≥ Layer(u)− (Layer(u)− localityG) + C(u, v)
= localityG + C(u, v)

This is a contradiction to C(u, v) > 0. �

Since in undirected graphs Layer(u) − Layer(v) has a
maximum value of 1, given that the graph is also un-
weighted, we only need to subtract previous two layers.

Given that C is the maximum edge weight that appears in
the graph, the locality can be bounded.
Lemma 2 (Upper-Bound on Locality) The locality of a uni-
formly positively weighted graph is bounded by the minimal

distance δ(v, u) from a successor node v back to u, maxi-
mized over all u. In other words, we have

max
u,v∈Γ(u)

{δ(v, u)}+C ≥ max
u,v∈Γ(u)

{Layer(u)−Layer(v)}+C

Proof: For any nodes u, v in a graph, the triangular prop-
erty of shortest paths Layer(u) ≤ Layer(v) + δ(v, u)
is satisfied. Therefore, δ(v, u) ≥ Layer(u) − Layer(v)
and maxu,v∈Γ(u){δ(v, u)} ≥ maxu,v∈Γ(u){Layer(u) −
Layer(v)}. In positively weighted graphs we have δ(v, u) >
0 such that maxu,v∈Γ(u){δ(v, u)} + 1 is larger than the lo-
cality. �

The question then arises is: How can we decide the com-
pute the locality in an implicitly given graph as they appear
in action planning? In general the answer is “no, we cannot”.
Nevertheless, in special cases, we can exploit the structure
of the graph to compute an upper bound on the locality. For
the ease of presentation, we restrict to actions with cost 1. A
duplicate node in an implicit graph appears when a sequence
of operators, applied to a state generate the same state again,
i.e., they cancel the effects of each other. Hence, the follow-
ing definition:

Definition 1 (no-op Sequence) A sequence of operators
a1, a2, . . . , ak is a no-op sequence if its application on a
state produces no effects, i.e, ak ◦ . . . ◦ a2 ◦ a1 = no-op,

This definition allows to bound the locality in the follow-
ing proposition. It generalizes the observation that for undi-
rected search spaces, in which for each operator a1 we find
an inverse action a2 such that a2 ◦ a1 = no-op.

Proposition 1 (no-op Sequence determines Locality) Let A
be the set of operators in the search space and l = |A|. If for
all operators a1 we can provide a sequence a2, . . . , ak with
ak ◦ . . . ◦ a2 ◦ a1 = no-op, then the locality of the implicitly
generated graph is at most k − 1.

Proof: If ak◦. . .◦a2◦a1 from each state v reached by a1 we
can reach each state u again in at most k− 1 steps. This im-
plies that maxu,v∈Γ(u){δ(v, u)} = k− 1. Theorem 2 shows
that this imposes the stated upper bound on the locality. �

It suffices to check that the cumulative add effects of the
sequence is equal to the cumulative delete effects. Using
the notation by (Haslum and Jonsson 2000), the cumulative
add σA and delete σD effects of a sequence can be defined
inductively as, σA(ak) = Ak, σD(ak) = Dk, and

σA(a1, . . . , ak) = (σA(a1, . . . , ak−1)−Dk) ∪Ak

σD(a1, . . . , ak) = (σD(a1, . . . , ak−1)−Ak) ∪Dk

This result gives us the missing link to the successful appli-
cation of external breadth first search in planning. Subtract-
ing k previous layer plus the current layer from the successor
list in an external breadth-first search guarantees its termina-
tion on finite planning graphs.

Net Benefit
In planning with preferences, we often have a monotone de-
creasing instead of a monotonic increasing cost function to

be minimized. Hence, we cannot prune states with an evalu-
ation larger than the current one. Essentially, we are forced
to look at all states.

The branch-and-bound algorithm we have developed in
the context of the fifth international planning competition
incrementally improves an upper bound U on the solution
length. When it comes to analyzing a layer in which more
than one goal is contained a goal g with the minimum value
C(g) is selected for solution reconstruction.

Net-benefit planning at IPC-6 concerns trading utility re-
ceived by achieving soft goals for total cost of the actions
used to achieve them. Planners competing in the optimal
track are expected to find best plans in terms of a linear ob-
jective function. Note that maximization problems (as ap-
pearing in the IPC-6 benchmark suite) can be easily trans-
formed into minimization problems (as described here), and
adding a constant offsets (also used in the benchmarks for
judging sub-optimal planners) does not change the solution
set.

We consider optimal planning with action costs, met-
ric quantities and goal utilities. For preference constraints
of type (preference pi φi) we associate a Boolean vari-
able violatedi (denoting the violation of constraint pi). For
the sake of brevity, we assume no scaling of the total cost
value and coefficients αi of the variables violatedp are ex-
pected to be discrete. Let benefit(π) = benefit(sn) =∑

i αiviolatedi(sn). Note that the notation of benefit has
been inverted, it decreases with the satisfaction of the con-
straints.

By modifying domain actions, MIPS-XXL is capable of
compiling the PDDL3 Boolean variables violatedi(sn) into
ordinary PDDL2 fluents. Then the metric we consider is
net-benefit = m = benefit + total-cost.

As above, state sets that are used are represented in form
of files. The search frontier denoting the current layer is
tested for an intersection with the goal, and this intersec-
tion is further reduced according to the already established
bound. The pseudo-code of the algorithm is shown in Fig-
ure 2.

Fortunately, while expanding a state set Open[f], we al-
ready have the current f -value for evaluating total-cost at
hand. This allows to use a different upper bound in the
branch-and-bound algorithm. The pseudo-code is presented
in Algorithm 2. With V we denote the current best solution
obtained according to m, which improves over time. With
V ′ we denote the old value of V . As the f -value increases
monotonically, we can also adapt V to improve over time.
The pseudo-code also adapts a small refinement, by observ-
ing that the upper bound U for benefit(π) is bounded V ,
which is effective if the impact total-cost is small.

Conclusion
We have shown how to extend MIPS-XXL to compute plans
with total action cost and net benefit. Recall that MIPS-XXL
is based on Metric-FF and can compute plans with fluents.
In contrast to the IPC-6, we participate in the optimal track
and not the suboptimal track. MIPS-XXL also no more in-
voke an internal memory planning algorithm before starting
the external memory algorithm.

Algorithm 2 External Net-Benefit Planning Algorithm.
Input: Problem P with action cost C(a), a ∈ A, Cost

function m = benefit + total-cost to be minimized
Output: Cost-optimal plan from I to state satisfying G

U ← maxbenefit; f = minbenefit +1
V ← V ′ ←∞
Open[f]← I
loop
for all f = 0, 1, 2, . . .

Open[f]← SortAndRemoveDuplicates(Open[f])
for all l = 0, . . . , f − 1

Open[f]← Open[f] \ Open[f − l]
if (

⋃f
i=f−C Open[i] = ∅ or (U = minbenefit)

return StoredPlan()
if (Open[f] ∩ G 6= ∅)

U ′ ← minbenefit
while U ′ + f < V ∧ ∃v ∈ Open[f] ∩ G.benefit(v) = U ′

U ′ ← U ′ + 1
if (U ′ + f < V)

V ← U ′ + f
if (V − f < U) U ← V − f
if (V < V ′)

V ′ ← V
Construct&StorePlan(Open[f] ∩ G, U ′)

for all i = 1, . . . , C
Succi ←

∨
a∈A,C(a)=i{v ∈ Γ(u, a) | u ∈ Open[f]}

Open[f + i]← Open[f + i] ∪ Succi

Unfortunately, we do not feature functional STRIPS that
has been proposed in the context of IPC-6 as an extension to
PDDL. The core reason is that no instantiation mechanism
is available yet. For external planning, the functional rep-
resentation can result in a smaller state vector. However, it
might not be considered a drastic change.

In difference to the previous heuristic search (Edelkamp
and Jabbar 2006), and breadth-first branch-and-bound al-
gorithms (Edelkamp, Jabbar, and Nazih 2006), due to the
monotonicity of the cost function in IPC-6, not all states are
looked at.

As a side effect, the branch-and-bound algorithm also
solves the shortest paths problem. Hence, to avoid too many
files processed for large values of C, we may restrict to
breadth-first branch-and-bound in the competition.

The two algorithms proposed are not much different from
the BDD exploration algorithms that we have developed in
the context of IPC-6. Up to the elimination of duplicates
and the computation of the image, the algorithms are pretty
much the same. This again validates the hypothesis that the
core design technique for joint symbolic and external algo-
rithms is to derive set-based algorithms.

References
Aggarwal, A., and Vitter, J. S. 1988. The input/output
complexity of sorting and related problems. Journal of the
ACM 31(9):1116–1127.

Dijkstra, E. W. 1959. A note on two problems in connec-
tion with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S., and Jabbar, S. 2006. Cost-optimal external
planning. In AAAI, 821–826.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale
optimal PDDL3 planning with MIPS-XXL. In Proceed-
ings of the International Planning Competition. Interna-
tional Conference on Automated Planning and Scheduling,
81–92.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In AIPS, 150–158.
Korf, R. E. 2003. Breadth-first frontier search with delayed
duplicate detection. In Model Checking and Artificial In-
telligence (MOCHART), 87–92.
Munagala, K., and Ranade, A. 1999. I/O-complexity of
graph algorithms. In SODA, 687–694.
Stern, U., and Dill, D. 1998. Using magnetic disk instead
of main memory in the murphi verifier. In International
Conference on Computer Aided Verification (CAV), 172–
183.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.

