
Additive and Reversed Relaxed Reachability Heuristics Revisited

P@trik Haslum
NICTA & The Australian National University

patrik.haslum@anu.edu.au

Introduction & Motivation
hsp∗0 and hsp∗f are sequential planners, optimal w.r.t.
the sum of arbitrary (non-negative) action costs objec-
tive. Both are essentially STRIPS planners, though
some additional language features, e.g., the object flu-
ents introduced in PDDL3.1, are handled by compila-
tion. Both planners are based on heuristic state-space
search, using the A∗ search algorithm with an admissi-
ble additive combination of h2 heuristics, obtained via
cost-distribution.

So, in what way do they differ? In the direction of
the search: hsp∗0 uses regression, searching backwards
from the goal, while hsp∗f searches forwards from the
initial state.

So, if that is the only difference, why enter both in
the competition? There is experimental evidence that
some planning domains are inherently more suited to
forward search and others to regression, but this phe-
nomenon is often obscured by other differences between
the methods, such as, e.g., heuristics, employed by plan-
ners. By creating forwards- and backwards-searching
planners that are as similar as they can reasonably be,
we may hope the competition results will provide a clas-
sification of the domains used w.r.t. this property.

Background
As usual, a propositional STRIPS planning problem
(P) consists of a set of propositional symbols (“atoms”),
a set of actions, an initial world state (I), and a set of
goal atoms (G). Each action has a set of precondition
atoms (pre(a)) and sets of atoms made true (add(a))
and false (del(a)) by the action.

For reasons that will become clear, we assume that
problems have a complete set of complementary atoms.
That is, there is a total function, not, on the set of
atoms such that not(not(p)) = p for each p, and such
that in any reachable state, exactly one of the atoms p
and not(p) is true. Complementary atoms are normally
created when compiling away negations, but if required
can be added to ensure completeness. This no more
than doubles the number of atoms in the problem.

Each action a also has a (constant and independent)
cost, cost(a), and the cost of a plan, a1, . . . , an, is the
sum of the costs of actions in it:

∑
i=1,...,n cost(ai).

Action costs are assumed to be non-negative, i.e.,
cost(a) ≥ 0 for all a. In principle, costs may be arbtrary
real numbers, but in practice, they are represented by
rationals. (It is not obvious how, or even if, non-rational
constants can be specified in PDDL.)

The (sequential) hm heuristic function assigns to any
set of atoms s a lower bound on the cost of any plan
for achieving s, i.e., reaching a state in which all atoms
in s are true, from the initial state. It is defined by

hm(s) =
0 if s ⊆ I

min hm((s− add(a)) ∪ pre(a)) + cost(a)
{a | del(a) ∩ s = ∅} if |s| 6 m

max hm(s′)
s′ ⊆ s, |s′| 6 m else.

Note that the atom set on the right-hand side in the
second case is the regression of s through the action
a, and that the minimisation is over all actions that
are applicable to s in a regression search. The solution
to the hm equation – for a given initial state – can
be represented by a table containing hm values for any
set s of at most m atoms. Computing this table is
polynomial in the number of atoms but exponential in
m. The heuristic value of any atom set s can then
be computed by evaluating only the last case of the
equation, using the table to obtain values of all size m
subsets of s. (For further details on hm, see Haslum,
2006).

On the Compilation of Object Fluents
The main novelty in PDDL3.1 1 is the introduction of
object fluents, functions that take their value among
problem objects. They can be used to encode multi-
valued (finite-domain) state variables. Arguments of
predicates and (object- or numeric-valued) functions in
PDDL3.1 can be general terms, composed of object flu-
ents, variables and constants.

Compilation of a problem with object fluents to com-
mon, “predicate-only”, PDDL form is a straightforward
application of the principle of the Skolem normal form

1http://ipc.informatik.uni-freiburg.de/
PddlExtension

in first-order logic – that a function term corresponds
to an existentially quantified variable – in reverse. Each
n:ary object-valued function (f ?a1 .. ?an) is re-
placed by an (n+1):ary predicate (val-f ?a1 .. ?an
?v), and action effects arranged so that (val-f ?a1 ..
?an ?v) is true exactly when (f ?a1 .. ?an) = ?v.
Each occurrance of an object function term is replaced
by a new existentially quantified variable, constrained
to have the value of the function by conjoining an in-
stance of the corresponding predicate. For example, the
condition (= (f (g ?x)) (f ?y)) becomes

(exists (?v1 ?v2 ?v3)
(and (val-g ?x ?v1) (val-f ?v1 ?v2)

(val-f ?y ?v3) (= ?v2 ?v3)))

Note that in a “STRIPS-style” action, existentially
quantified variables can be transformed into additional
parameters, thus preserving action simplicity.

There are (at least) two ways to represent that (f
..) is undefined: either no instance of (val-f ..) is
true, or (val-f .. U) is true for a distinct constant
“U”. Both are workable, but the latter has some ad-
vantages: one is that exactly (instead of at most) one
instance of (val-f .. ?v) is true in every reachable
state, and hence that universal quantification over ?v
is equivalent to existential quantification. This greatly
simplifies the compilation of conditional effects.

Planning Problem Reversal
The hm heuristic is inherently geared to regression
search: it estimates the cost of reaching any subgoal
set (i.e., regression search state) from a given world
state. So, how can it be applied in the forward search
carried out by hsp∗f? By reversing the problem.

For every STRIPS planning problem P , there is a
problem R(P), constructible from P mechanically in
polynomial time and space, such that for any valid
plan a1, . . . , an for R(P) the reversed action sequence,
i.e., an, . . . , a1, is a valid plan for P , and vice versa.
In fact, the correspondance between P and R(P) goes
deeper: for any (completely specified) state S and any
plan achieving the goal G from S in P , the reversed ac-
tion sequence is a plan achieving the set of atoms that
hold in S from the initial state in R(P), and therefore
any lower bound on the cost of achieving S in R(P) is
also a lower bound on the cost of reaching the goal from
S in P . Thus, problem reversal gives a basis for using
the hm heuristic in a forward search. The definition
of STRIPS problem reversal and the “correspondance
property” is due to Massey (1999), who used it to inves-
tigate directional bias in different planners. Pettersson
(2005) used it to construct a reversed planning graph,
thus creating a forward-searching version of Graphplan.

Massey’s reversal procedure is compositional, creat-
ing for each action a in the original problem P a re-
versed action R(a). Because the existence of a comple-
mentary atom, not(p), for each atom p in P is assumed,
the set of atoms in R(P) will also be the same as in P .
However, in R(P) it may be possible to reach states

in which both p and not(p) are true, at least for some
p. Intuitively, the preconditions of R(a) are the effects
of a, i.e., what must in the original problem hold in
any state immediately after a has been applied, and
the effects of R(a) “undo” the effects of a, so that in a
state resulting from application of R(a) in the reversed
problem, the preconditions of a hold. Formally,

pre(R(a)) =
add(a) ∪ {not(p) | p ∈ del(a)} ∪ (pre(a)− del(a))

add(R(a))=
(pre(a) ∩ del(a))∪
{p, not(p) | p ∈ (add(a) ∪ del(a)) ∧ not(p) 6∈ pre(a)}

del(R(a)) =
{not(p) | p ∈ pre(a)} .

For any atom p mentioned in the (positive or negative)
effects of a such that neither p nor not(p) is in the
precondition of a, R(a) makes both p and not(p) true,
because in this situation it can not be determined if
p was true or false before a was applied. The initial
state of R(P) assigns p true and not(p) false for any
atom p ∈ G, because any such atom must be true in a
goal-satsifying state in the original problem, and true
to both p and not(p) for any atom not mentioned in
G, because the status of such atoms in the goal state is
unknown. The goal of R(P) comprises all atoms that
are true in the initial state of P (since each atom has
a complement, taking only the atoms true in a state as
goals in the reversed problem suffices to specify a world
state completely). As noted above, this extends to any
world state in P .

As noted above, it is in R(P) possible to reach states
in which both p and not(p) are true, for some atoms
p (indeed, this is usually true even in the initial state
of R(P)). That there is in spite of this a one-to-one
correspondance between plans for R(P) and plans for
P is due to the fact that the goal of R(P) specifies a
complete state. However, it typically makes heuristics
computed on the reversed problem less informative –
at least that is the case h2. This problem can, at least
to some extent, be countered by extending action pre-
conditions and the goal in the original problem with
relevant implied atoms before reversal. In many plan-
ning problems, certain properties are invariant over all
reachable states. Of particular interest here are binary
mutex relations: pairs of atoms p and q such that at
most one is true in any reachable state. If atom q is mu-
tex with some atom p ∈ pre(a), not(q) can be added to
pre(a) without changing the semantics of the problem
(because in any reachable state where a is applicable,
p is true, so q must be false and hence not(q) true).
This is done, if possible, for any atom that is, or whose
complement is, mentioned by the actions effects. The
goal G is likewise extended. Mutex information is ob-
tained from the h2 heuristic, for the original problem
P : if h2({p, q}) = ∞, p and q are mutex.

Note that this reasoning can be extended also to
“exactly-1” invariants, i.e., sets of atoms of which ex-
actly one is true in every reachable state: if {p1, . . . , pk}

is such an invariant, and if every pi in this set except
one is mutex with atom set s, the single atom that is
not must be true in any state where s holds, i.e., is
implied by s.

Additivity via Cost-Distribution
The hm heuristic approximates the cost of achieving
any set of more than m atoms by the cost of achieving
the most costly subset of size m. In planning with sum
of action costs as the objective, this sometimes results
in poor estimates. This is most easily seen in prob-
lem with a large (� m) number of goals and where the
sets actions relevant to achieving each goal have little
overlap. In such cases, being able to add heuristic esti-
mates of the cost of achieving separate sets of subgoals,
without loss of admissibility, is crucial for the success
of heuristic search.

Cost-distribution is a general method for obtaining
an additive version of any admissible heuristic. The
idea is simple: Given a planning problem P , create k
“copies” of it, and modify the cost function in each copy
so that for no action is the sum of its cost over all the
copies greater than its cost in P . Then, the sum of
optimal solution costs over all copies is also no greater
than the optimal solution cost in P , and thus the sum
of values of any ensamble of admissible heuristics, one
computed on each copy, is admissible for P . This idea
is implicit in some work on pattern database heuristics
in domain-specific search (e.g., Korf & Felner, 2002),
and was generalised when applied to the h2 heuristic
by Haslum, Bonet & Geffner (2005). They, however,
considered only “0–1” distribution of action costs, i.e.,
counting the full cost of each action in one problem
copy only and assigning it zero cost in all other copies.
Katz & Domshlak (2007) recognised that the principle
applies equally to any splitting of the cost of each action
into fractions among the copies, as long as they do not
sum to more than the original action cost.

The accuracy of an additive heuristic obtained via
cost-distribution typically depends very much on the
specific distribution of costs. A poor choice may even
result in a heuristic that is weaker than the heuristic
computed on the problem with original costs. Finding
a good distribution of costs in a domain-independent
manner is a non-trivial problem. Haslum, Bonet &
Geffner (2005) proposed one strategy for partitioning
actions (i.e., constructing a 0–1 distribution), which
creates one partition for each goal atom, by dividing
actions into disjoint sets, based on the multi-valued
state variable they affect, and assigning each set to one
partition based on an estimate of the loss in heuris-
tic value for the corrsponding goal atom incurred by
not counting the cost of actions in the set. While this
method achieves good results in some domains (no-
tably Blocksworld), it also has several drawbacks: due
to the initial division into action sets, it depends on
a “good” choice of multi-valued state variable encod-
ing, and creating one partition per goal atom is only
appropriate when the solution divides into mostly in-

dependent parts at that level. As an example, in the
Logistics and Rovers domains, a partition that groups
actions by the “location” that they move something to
(or otherwise affect) can result in a far more accurate
additive h2 heuristic. This partition can not be found
by the above method.

At present, the method of cost distribution to be used
in hsp∗0 and hsp∗f is still undecided, and several methods
are under development. The following is only a sketch
of some ideas currently pursued.

Analysing the Critical Tree Although the equa-
tion that defines the hm heuristic is normally explained
as a relaxation of the optimal cost function for the
(sequential) regression search space, it may also be
viewed as defining the optimal cost function for a
different, relaxed, search space. This is a min/max
(AND/OR) space, in which sets of more than m atoms
are max/AND nodes, whose solution cost is the maxi-
mum over all child nodes, which are subsets of size m,
and sets of m or fewer atoms are min/OR nodes, whose
solution cost is the minimum over all child nodes, which
are the possible regressions of the set. A max/AND
node is solved only when all its children are solved,
while a min/OR node is solved if one child node is
solved. Thus, the solution, for a given goal set of atoms
s, in this space is a tree. Call the subtree of this tree
containing only branches corresponding to the most ex-
pensive children of each max node (i.e., the ones that
define its value) the critical tree of s.

Not all actions are represented in the critical tree.
However, this does not mean that the cost of any action
that is not can be ignored, because doing so may lower
the cost some child of a min node below the value of the
previously minimum-cost child, thus altering the shape
of the tree. A critical action set, again for a given goal
set of atoms s, is one such that counting the (full) cost of
all actions in it is sufficient to preserve the cost of each
node in the critical tree of s: to do so, it is sufficient
to preserve for every max node the cost of at least one
maximum-cost child node, and for every min node that
the cost of all child nodes remains above (or equal to)
the minimum-cost child node. This reasoning can be
generalised to preserving any cost bound, yielding the
following, non-deterministic, algorithm for computing a
set CAS(s, c) of actions, counting the cost of which is
sufficient to ensure that the hm cost of atom set s is at
leact c:

If c = 0: CAS(s, c) = ∅.
If |s| > m, c > 0: choose s′ ⊂ s with |s′| = m and

hm(s′) ≥ c, and let CAS(a, s) = CAS(a, s′); if there
is no such s′, fail.

If |s| ≤ m, c > 0: Let A = ∅.
For each action a such that del(a) ∩ s = ∅:

Let s′ = (s− add(a)) ∪ pre(a); and
choose if hm(s′) + cost(a) ≥ c, let A = A ∪ {a} ∪
CAS(s′, c− cost(a)), else fail;

or choose if hm(s′) ≥ c, let A = A ∪ CAS(s′, c),
else fail.

Let CAS(s, c) = A.
This yields a simple, recursive strategy for creating a 0–
1 distribution (i.e., a partioning of the set of actions):
First, compute h2, counting the cost of all actions, and
find a (minimal) critical action set for the goal, G. They
form the first partition. Next, compute h2 counting the
cost only of remaining actions and find a (minimal) crit-
ical action set for the goal with respect to this heuristic.
This is the second partition. The process can repeated
as many times as desired, until no actions remain.

The advantage of this strategy is that it preserves
at least the hm value of the goal set G. It also allows
the maximum number of partitions created to be con-
trolled. The main difficulty is efficiently realising the
above algorithm (even without minimality).

Bottom-Up Construction (with Glueing) This
strategy proceeds in a manner quite the opposite of
those discussed above. Instead of slicing the set of ac-
tions in a top-down fashion along the top-level goals
or the critical tree, it creates one initial action set for
each atom, containing those actions that add the atom,
and one problem copy for each action set. As the sets
are not necessarily disjoint, the cost of an action rep-
resented in more than one set is split, evenly, between
the relevant problem copies. This simple operation in
some cases creates quite good additive heuristics.

However, it also has drawbacks: First, it leads to
a very large number of h2 components in the additive
heuristic, making it costly to evaluate. Second, if the
(most costly) preconditions of actions with the same
effect are disjoint, the heuristic value can drastically
decrease. To see why, suppose there are two actions,
a1 and a2, that add p, and that pre(a1) = {q} and
pre(a2) = {r}. In the component counting actions that
add p, the heuristic value of the preconditions of both
a1 and a2 is zero (since no action relevant to achieving
them counts), so the h2 estimate of the cost of achieving
p is just the minimum of cost(a1) and cost(a2). In the
component counting actions that add q, the estimated
cost of pre(a1) is non-zero, but h2(pre(a2)) is zero (since
actions relevant to achieving r do not count) and thus
h2({p}) ≤ h2(pre(a2)) + costq(a2) = 0 (where costq is
the cost function in the problem copy counting only ac-
tions that add q, which is zero for a2), and the same
happens with a1 in the component for r. Thus, even the
sum over all three yields only min(cost(a1), cost(a2)) for
the cost of achieving p, ignoring the cost of achieving
pre(a1) and pre(a2). In short, excessive splitting cre-
ates (alternative) “short-cuts” for achieving the same
atom set in different copies, and because each compo-
nent heuristic locally choses the cheapest way to achieve
a set of atoms, the sum becomes low.

A way to counter both problems is to form a smaller
number of larger sets of atoms (and placing in the cor-
responding action set each action that adds some atom
in the set, again splitting the cost of actions relevant to

more than one). In line with the bottom-up approach,
atom sets are obtained by starting from a collection of
singleton sets for each atom and iteratively merging (or
“glueing”) them. Some reasonable guidelines for the
choice of sets to merge are:

1. Merge atoms that appear as (most costly) pre-
conditions of different actions with overlapping effects.
This to counter the problem illustrated by the example
above.

2. Avoid merging atoms that appear together in ac-
tion preconditions, or in the goal. Since all atoms in
the precondition of an action, or in the problem goal,
need to be achieved simultaneously, if at all, they do
not give rise to the problem of “alternative short-cuts”
illustrated above. Thus, adding rather than just max-
imising over them is likely to be better.

3. If atom p is relevant only as a precondition of
some action that adds a (relevant) atom q, merge p
with q. This should have little effect on the heuristic
value, as the two atoms are steps along a single (critical)
path rather than on alternative paths, but still serves
to reduce the number of distinct sets.

4. Prefer merging sets of atoms whose sets of relevant
actions have a large overlap, as this reduces the splitting
of action costs into fractions.

These guidelines are not precise, probably not com-
plete, and clearly sometimes contradictory. Exactly
how to design a merging process based on them, or
some other principle, is still an open question.

Acknowledgement NICTA is funded by the Australian Govern-

ment as represented by the Department of Broadband, Communica-

tions and the Digital Economy and the Australian Research Council

through the ICT Centre of Excellence program.

References
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New ad-
missible heuristics for domain-independent planning.
In Proc. 20th National Conference on AI (AAAI’05),
1163–1168.
Haslum, P. 2006. Admissible Heuristics for Automated
Planning. Ph.D. Dissertation, Linköpings Universitet.
Katz, M., and Domshlak, C. 2007. Structural patterns
of tractable sequentially-optimal planning. In Proc. of
the 17th International Conference on Automated Plan-
ning and Scheduling (ICAPS’07), 200–2007.
Korf, R., and Felner, A. 2002. Disjoint pattern
database heuristics. Artificial Intelligence 134(1-2):9–
22.
Massey, B. 1999. Directions in Planning: Understand-
ing the Flow of Time in Planning. Ph.D. Dissertation,
University of Oregon.
Pettersson, M. 2005. Reversed planning graphs for
relevance heuristics in AI planning. In Castillo, L.;
Borrajo, D.; Salido, M.; and Oddi, A., eds., Planning,
Scheduling and Constraint Satisfaction: From Theory
to Practice, volume 117 of Frontiers in AI and Appli-
cations. IOS Press. 29–38.

