
The FF(ha) Planner for Planning with Action Costs

Emil Keyder
Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

emil.keyder@upf.edu

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Passeig de Circumvalació 8
08003 Barcelona Spain

hector.geffner@upf.edu

Abstract

FF(ha) is the FF planner but with a different heuristic ha that
is sensitive to action costs. More precisely, the relaxed plans
in FF(ha) are computed in a simple manner from the additive
heuristic ha rather than from the relaxed planning graph as in
FF. The result is a planner that inherits the properties of FF,
in particular, its performance, speed, and scalability, but that
takes cost information into account.

Introduction
FF(ha) is a heuristic search planner that combines elements
of FF (Hoffmann & Nebel 2001) and HSP (Bonet & Geffner
2001). The heuristics used are variations of HSP’s additive
heuristic ha, while the basic search algorithm, enforced hill
climbing (EHC), is that of FF. The result is a planner that
can generate plans as quickly as FF but that is cost-sensitive;
that is, it is able to take into account cost metrics other than
the number of actions in a plan during the search. Results
on several domains and a more detailed description of the
planner are available in (Keyder & Geffner 2008); here we
give only a short overview.

In order to simplify the definition of the heuristics, we
introduce a dummy End action with zero cost, whose pre-
conditions G1, . . . , Gn are the goals of the problem, and
whose effect is a dummy atom G. The estimate h(s) of the
cost from state s to the goal is then written as h(G; s), the
cost of achieving the ’dummy’ atom G from s.

Additive Heuristic ha

The additive heuristic introduced in (Bonet & Geffner 2001)
is a polynomial approximation of the optimal delete-free
heuristic h+ where subgoals are assumed to be independent.
This assumption is normally false but results in an heuristic
function ha(s) that is easy to compute where

ha(s) = h(G; s) (1)

and h(p; s) provides an estimate of the cost of achieving p
from s given by the equations

h(p; s) =
{

0 if p ∈ s
h(ap; s) otherwise (2)

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with
ap = argmina∈O(p)h(a; s) (3)

and
h(a; s) = cost(a) +

∑
q∈Pre(a)

h(q; s) (4)

where O(p) stands for the set of actions in the problem that
add p.

The additive heuristic, as its name implies, makes the as-
sumption that the cost of achieving a set of atoms is equal
to the sum of the costs of achieving each of the atoms sep-
arately. When this assumption is true, either because action
preconditions and subgoals can be achieved with no side ef-
fects, or because the goal and action preconditions contain
one atom at most, ha is equal to h+, and the additive heuris-
tic is optimal for the delete relaxation. Versions of the ad-
ditive heuristic appear also in (Do & Kambhampati 2001;
Sapena & Onaindia 2004; Smith 2004), where the cost of
joint conditions in action preconditions or goals is set to the
sum of the costs of each condition in isolation.

Relaxed Plans from the Additive Heuristic
A relaxed plan πa(s) can be computed from the additive
heuristic ha in the state s by storing, during the computa-
tion, the supports ap of each atom p in the problem ; namely,
the actions a that add p and have minimum h(a; s) value.1
The relaxed plan πa(s) can be then defined in terms of these
supports as:

πa(s) = πa(G; s)

πa(p; s) =
{

{} if p ∈ s
{ap}

⋃
πa(ap) otherwise

where

πa(a) = ∪q∈pre(a)πa(q; s)
While πa(s) is a set of actions, it is easy to show that it

can be ordered as a plan that achieves the goal G from s in
the delete relaxation. The heuristic estimator is then defined
as

hd
a(s) =

∑
a∈πa(s)

cost(a)

1Ties between supports are broken arbitrarily.

rather than as the length |πa(s)| of the relaxed plan. The
heuristic hd

a(s) is equal to the additive heuristic ha(s) when
the same action is not used to support more than one pre-
condition in the relaxed plan πa(s). Otherwise, the heuristic
hd

a(s) counts the cost of the actions that support multiple
conditions in the relaxed plan πa(s) only once, while the
additive heuristic ha(s) may count the cost of such actions
multiple times. For this reason, when needed, we refer to
the heuristic hd

a(s), as the additive heuristic with duplicates
eliminated.

The Set-Additive Heuristic
In addition to the additive heuristic, the FF(ha) planner im-
plements two other heuristics for computing relaxed plans.
The first such heuristic minimizes the cost of the relaxed
plan for each atom recursively during the computation,
rather than minimizing the value of the original additive
heuristic during the computation and extracting the relaxed
plan as a post-processing step. In the additive heuristic, the
cost of the best supporter ap of p in s, h(ap; s), is propagated
to obtain the cost of p, h(p; s). In contrast, in the set-additive
heuristic, the best supporter ap of p is itself propagated, and
supports are combined by set-union rather than by sum, re-
sulting in a function π(p; s) that represents a set of actions
which can be defined similarly to h(p; s):

π(p; s) =
{

{} if p ∈ s
π(ap; s) otherwise (5)

where

ap = argmina∈O(p)Cost(π(a; s)) (6)

π(a; s) = {a}
⋃

{∪q∈Pre(a) π(q; s)} (7)

Cost(π(a; s)) =
∑

a′∈π(a;s)

cost(a′) (8)

That is, the best supporter ap of p is propagated to compute
π(p; s), and supports for preconditions and goals are com-
bined by set-union. The action ap minimizing the cost of the
plan made up of itself and the union of the relaxed plans for
each of its preconditions is selected as the best supporter for
each p. The set-additive heuristic hs

a(s) for a state s is then
defined as

hs
a(a) = Cost(π(G; s)) (9)

The TSP Heuristic
The heuristic hs

a(s) associates with every atom p a relaxed
plan π(p; s) (Equations 5–9). The latter can be general-
ized by replacing the plans π(p; s) with more generic labels
L(p; s) that can be numeric, symbolic, or a suitable combi-
nation, provided that there is a function Cost(L(p; s)) map-
ping labels L(p; s) to numbers.

Here we consider labels L(p; s) that result from treating
one designated multivalued variable X in the problem in a
special way. A multivalued variable X is a set of atoms x1,
. . . , xn such that exactly one xi holds in every reachable
state. For example, in a task where there are n rocks r1, . . . ,

rn to be picked up at locations l1, . . . , ln, the set of atoms
at(l0), at(l1), . . . , at(ln), where at(l0) is the initial agent
location, represent one such variable encoding the possible
locations of the agent. If the cost of going from location li
to location lk is c(li, lk), then the cost of picking up all the
rocks is the cost of the best (min cost) path that visits all the
locations, added to the costs of the pickups. This problem is
a TSP and therefore intractable, but its cost can be approxi-
mated by various fast suboptimal TSP algorithms. Here we
have implemented the 2-opt algorithm described in (Lin &
Kernighan 1973). By comparison, the delete-relaxation ap-
proximates the cost of the problem as the cost of the best
tree rooted at t0 that spans all of the locations. The modi-
fication of the labels π(a; s) in the set-additive heuristic al-
lows us to move from the approximate model captured by
the delete-relaxation to approximate TSP algorithms over a
more accurate model.

For this, we assume that the actions that affect the se-
lected multivalued variable X do not affect other variables
in the problem, and maintain in each label π(p; s) two dis-
joint sets: a set of actions that do not affect X , and the set
of X-atoms required as preconditions by these actions. The
heuristic hX(s) is then defined as

hX(s) = CostX(π(G, s)) (10)
where CostX(π) is the sum of the action costs for the ac-
tions in π that do not affect X plus the estimated cost of the
’local plan’ (Brafman & Domshlak 2006) that generates all
the X-atoms in π, expressed as

CostX(π) = Cost(π ∩ X̄) + CostTSP (π ∩ X) (11)

where

π(p; s) =

{ {} if p ∈ s
{p} if p ∈ X
π(ap; s) otherwise

ap = argmina∈O(p)CostX(π(a; s))

π(a; s) = {a}
⋃

{∪q∈Pre(a) π(q; s)}

and CostTSP (P) is the cost of the best path spanning the
set of atoms P , starting from the value of X in s.

Our current implementation of this TSP heuristic chooses
the multi-valued variables X to be the root variables of the
causal graph (Helmert 2004). This works well in certain
domains in which an agent can move around a domain with-
out restrictions and much of the cost of the problem is due
to these movements. How to identify these types of domains
and use this heuristic effectively when X is not the root vari-
able is a topic of further research.

Discussion
The three heuristics discussed here are available as
command-line options in the FF(ha) planner. We have
found that while the set-additive heuristic can in theory pro-
duce more accurate estimates than the more naive duplicate-
eliminating additive heuristic, this effect is rarely noticeable

for current benchmark domains. hs
a is however noticeably

slower in terms of computation time, due to the addition in
ha being replaced by the set-union operation. This makes
the duplicate-eliminated additive heuristic a better choice in
general as more nodes can be evaluated in the same amount
of time. The third heuristic hX is useful in certain domains
in which a single multi-valued variable contributes greatly to
the cost of plans, but it is unclear how to detect this condition
in a general way. The default heuristic used by the planner
is therefore the duplicate-eliminated additive heuristic.

Planner
The main search algorithm used by FF(ha) is EHC, with two
minor changes from the version used by FF.

In FF, helpful actions are defined as H(s) = {a ∈
A|add(a) ∩ G1 6= ∅}, where G1 denotes the set of atoms
in the first layer of the planning graph arising from the ex-
traction of the plan πFF (s). They are defined similarly in
FF(ha), with G1 being defined equivalently as the set of
atoms p achievable in one step, i.e., |π(p; s)| = 1, such that
p is a goal or a precondition of some action in the relaxed
plan π(G; s).

Second, while EHC search in FF commits to an action
as soon as a node with a lower heuristic value is found,
FF(ha) generally evaluates the full set of neighboring states
s′, choosing among those with lower heuristic estimates than
the current state the one which minimizes the expression
cost(a) + h(s′). The exception to this is if an action is
found such that the resulting state has a heuristic estimate
equal to the cost of the current state minus the cost of the
applied action, and the size of the relaxed plan |π(s′)| is one
less than the size of the relaxed plan for the current state.
If no neighboring state can be found with a lower heuristic
estimate than that of the current state, EHC search at further
levels continues as in FF, moving to a state with lower cost
than that of the current one as soon as one is found.

FF(ha) is implemented on top of the code for Metric-FF
(Hoffmann 2003). We have used Metric-FF rather than FF
as cost information is currently expressed in PDDL through
numeric variables. FF(ha), however, does not deal with nu-
meric variables. After being used together with the plan
metric to determine action costs, all numeric variables in the
problem are removed from consideration.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Brafman, R., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI-06.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Proc.
ECP 2001, 82–91.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS-04, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state variables. J.
Artif. Intell. Res. (JAIR) 20:291–341.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In 18th European Conference
on Artificial Intelligence (ECAI-08).
Lin, S., and Kernighan, B. W. 1973. An effective heuristic
algorithm for the traveling-salesman problem. Operations
Research 21:498–516.
Sapena, O., and Onaindia, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. In Advances in Artificial
Intelligence: Proc. IBERAMIA 2004, LNAI 3315, 114–123.
Springer.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In Proc. ICAPS-04, 393–401.

