
TFD: A Numeric Temporal Extension to Fast Downward

Gabriele Röger and Patrick Eyerich and Robert Mattmüller
University of Freiburg, Germany

{roeger,eyerich,mattmuel}@informatik.uni-freiburg.de

Abstract

Temporal Fast Downward (TFD) is a variant of the well-
known propositional Fast Downward planning system and
supports the temporal and numeric features of PDDL. Like
the propositional system, TFD is based on heuristic search
but makes use of a different heuristic that is a generalization
of Fast Downward’s original causal graph heuristic.

Introduction
Fast Downward (Helmert 2006) is a well-known planning
system that won the “classical” (i.e., propositional, non-
optimizing) part of the 4th International Planning Compe-
tition in 2004. The system is based on heuristic state space
search using the causal graph heuristic (Helmert 2004) that
exploits causal dependencies of the planning domains.

A limitation of Fast Downward is that it only deals with
the propositional fragment of PDDL. For this reason, we
have extended the system to cover the numeric and temporal
features of PDDL resulting in a new planning system called
Temporal Fast Downward (TFD).

Temporal Fast Downward copes with the numeric features
by partially decoupling them from the operators (by intro-
ducing two new types of axioms) and handling them sep-
arately. The temporal aspects are primarily handled by an
adaption of the search space to concurrent actions.

Besides the adjustments that were necessary to cope with
the wider PDDL fragment, the most important difference is
that TFD does no longer use the causal graph heuristic. In-
stead, it makes use of the context-enhanced additive heuris-
tic (CEA) recently proposed by several Geffner (2007). This
heuristic is a generalization of both the causal graph heuris-
tic and the additive heuristic (Bonet, Loerincs, & Geffner
1997).

Fast Downward works in three steps: First it translates the
input to a planning formalism with multi-valued state vari-
ables. In a second step, the so-called knowledge compilation
component generates several data structures that are used
during search. The third component of the system imple-
ments the actual search. Temporal Fast Downward retains
this structure of Fast Downward. In the following, we ad-
dress the several components (translation, knowledge com-
pilation, and search) in more detail.

Translation
The translator has the following responsibilities:

• Compiling away (most) ADL features and object fluents.

• Moving numeric features from the operators to axioms.

• Grounding the operators and axioms.

• Converting the resulting (binary) representation to one
with multi-valued state variables.

Most of these steps are also done by the translator of the
propositional Fast Downward system and were adapted to
the temporal formalism in a straightforward manner. Proba-
bly the only peculiar aspects are the treatment of object flu-
ents and the handling of numeric features.

One of the most remarkable features of the original trans-
lator is that it transforms the binary representation of a task
to one with multi-valued state variables. The main change
from PDDL 3.0 to version 3.1 is that one can use object
fluents, which are quite similar to multi-valued state vari-
ables. Thus, it might seem silly that the first thing we do is
to compile away these objects fluents. The main reason for
this is that object fluents can be nested which cannot directly
be carried over to Fast Downward’s multi-valued state vari-
ables. Experiments have shown that usually the conversion
in the last step of the translation introduces a multi-valued
state variable for each unnested object fluent but often also
finds additional propositional variables that can be combined
to multi-valued variables.

The temporal aspects (like conditions and effects being
annotated with time specifiers) are handed over to the knowl-
edge compilation component in a straightforward way.

Besides the temporal aspects, the major difference from
the original propositional translator is that we have to han-
dle numeric features. As mentioned in the introduction we
introduced two new types of axioms for this purpose: nu-
meric axioms map numeric expressions to derived numeric
variables and comparison axioms map a comparison of two
numeric variables to a binary comparison variable. After
these substitutions numeric expressions occur in operators
only as derived numeric variables and comparisons as com-
parison variables. All this may seem overly complicated but
the approach has the advantage that it somewhat uncouples
the numeric features from the operators and makes it possi-
ble to handle them separately.



Knowledge Compilation
The purpose of the knowledge compilation component is
to build some data structures that are used by the context-
enhanced additive heuristic and that facilitate efficient state
expansion during search. In detail, the responsibilities of
this preprocessing step are:
• Computing the causal graph of the planning task which

encodes dependencies between different state variables.
• Computing the domain transition graph for each state

variable that encodes how operators affect the variable.
• Computing the successor generator, a data structure that

supports efficiently computing an over-approximation of
the set of applicable operators for a state.
The causal graph encodes dependencies between differ-

ent state variables. Conceptually, the computation of the
causal graph in TFD remains the same as in Fast Downward:
The causal graph contains an arc from a source variable to a
target variable if changes in the value of the target variable
can depend on the value of the source variable. However,
in contrast to Fast Downward we do not require the causal
graph to be acyclic, so there is no need for a relaxation of
the planning task at this level.

For each state variable a domain transition graph (DTG)
is computed that encodes under which circumstances the
variable can change its value. While it is sufficient to use
only one kind of DTGs in Fast Downward (since there is
only one variable type), we have to distinguish different
forms of DTGs for the different kinds of variables in a tem-
poral multi-valued planning task. While the DTGs for com-
parison variables only differ from the original ones in minor
details, we cannot use the same concept for numeric vari-
ables since their domain range is infinite. Actually, a DTG
for a numeric variable not even is a graph. Instead, it con-
tains the information necessary for creating a graph structure
online during the calculation of the heuristic value.

Derived variables are handled using a straightforward
adaption of the axiom evaluator from Fast Downward to nu-
meric and comparison axioms.

Unlike the causal graph heuristic, the context-enhanced
additive heuristic no longer requires an explicit representa-
tion of the causal graph of the problem or the DTGs of the
state variables. Nevertheless, the implementation can be op-
timized at several points by using the information given by
these data structures, so we decided to compute them any-
way.

Search
The search component is responsible for the systematic ex-
ploration of the state space of the given problem. We use
a greedy best-first search approach enhanced with deferred
heuristic evaluation. The main differences between Tem-
poral Fast Downward and Fast Downward with respect to
search are:
1. Search space: Besides the values of the state variables,

the time-stamped states in the search space contain a real-
valued time stamp as well as information about scheduled
effects and conditions of currently executed actions. This

representation is very similar to the one chosen by Do and
and Kambhampati in the SAPA system (Do & Kambham-
pati 2003). A transition from one time-stamped state to
another is accomplished by either (a) adding an applica-
ble action starting at the current time point, applying its
start effects and scheduling its end effects as well as its
over-all and end conditions, or (b) letting time pass until
the next scheduled happening and adapting the new time-
stamped state accordingly, i.e., applying effects scheduled
for the new time point and deleting expired conditions.

2. Heuristic: The search is guided by a variant of the
context-enhanced additive heuristic adapted to handle nu-
meric variables. The original CEA heuristic is a general-
ization of both the additive heuristic and the causal graph
heuristic used in Fast Downward and does not require the
causal graph to be acyclic. The heuristic does not work on
time-stamped states but on a relaxed version of them. For
example, the information about when and under which
conditions scheduled effects will occur is neglected. Sim-
ilarly, scheduled conditions are not considered at all.
The heuristic computation uses search techniques on
DTGs based on Dijkstra’s algorithm and takes into ac-
count the current context of the relevant state variables.
The basic idea of the extension to numeric state variables
is to construct the graph on which Dijkstra’s algorithm is
performed on-the-fly during the heuristic computation.

References
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Pro-
ceedings of the 14th National Conference on Artificial In-
telligence (AAAI-97).
Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. Journal of Artificial In-
telligence Research (JAIR) 20:155–194.
Geffner, H. 2007. The causal graph heuristic is the additive
heuristic plus context. In Proc. 2007 ICAPS Workshop on
Heuristics for Domain-Independent Planning.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling (ICAPS
2004), 161–170. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.


