
Plan-A: A Cost Optimal Planner Based on SAT-Constrained Optimization ∗

Yixin Chen
Department of Computer Science

Washington University in St. Louis
St. Louis, MO 63130, USA

chen@cse.wustl.edu

Qiang Lv
Department of Computer Science

University of Science and Technology of China
Hefei, Anhui, China

rczx@mail.ustc.edu.cn

Ruoyun Huang
Department of Computer Science

Washington University in St. Louis
St. Louis, MO 63130, USA

rh11@cse.wustl.edu

Abstract

Planning as satisfiability, represented by SATPlan, can find
plans with the shortest makespan for classical planning.
However, it has been deemed a limitation of SAT-based ap-
proaches for delivering optimality regarding metrics other
than the makespan.
Our Plan-A solver uses the SAT-based framework to find
plans with minimal total action costs. The idea is to opti-
mally solve SAT instances based on certain optimality met-
rics. Bounding and pruning techniques are proposed and inte-
grated with the standard DPLL algorithm to reduce the search
cost.

Introduction
Planning as satisfiability, represented by Blackbox (Kautz
& Selman 1996), SATPlan (Kautz 2004; 2006), and Max-
Plan (Chen, Zhao, & Zhang 2007), is a well-known ap-
proach for optimal classical planning.

Given a planning problem, SATPlan encodes the prob-
lem into a SAT formulation with a fixed “makespan” k and
checks the satisfiability using a SAT solver. If the SAT
model is satisfiable, SATPlan returns a solution; otherwise
it increases k by 1 and repeats. Most SAT based planners
follow this framework and generate plans that are optimal in
terms of the makespan.

However, in many planning applications, optimal plans
that minimize the action costs are needed. In such problems,
each action has a nonnegative cost and the goal is to find
a plan with minimum total cost of actions. It is deemed a
major limitation of the SATPlan framework that it is difficult
to optimize other plan metrics, such as the total action costs.

SATPlan≺ (Giunchiglia & Maratea 2007), a recent vari-
ation of SATPlan, makes a significant step towards using
SATPlan for cost-optimal planning. It can generate plans
with minimum number of actions for a given makespan.
This is achieved by solving the SAT instances using OPT-
SAT (Giunchiglia & Maratea 2006), a tool for solving SAT-
constrained optimization problems. Unlike the traditional

∗This work is supported by a Microsoft Research New Faulty
Fellowship and NSF Grant IIS-0713109.

DPLL style algorithms, OPTSAT does not follow a branch
and bound scheme but solves the optimization problem by
imposing a partial ordering on the literals to branch on.
Given a SAT model Π and a subset S of the variables in
Π, OPTSAT can return an optimal solution that minimizes
the number of variables in S that are assigned to true.

We propose another alternative approach to optimize the
action costs. This algorithm, called Plan-A, is based on
DPLL-OPT, a novel algorithm we propose for finding so-
lutions to SAT instances that minimize an objective func-
tion. Instead of seeking for any feasible solution, DPLL-
OPT completely searches the space of a SAT instance to
minimize the given objective function. DPLL-OPT follows
the DPLL framework. However, when a satisfiable solution
is found, DPLL-OPT does not quit but instead adds a block-
ing clause to the clause database to prevent the search to re-
turn the same solution again. It then performs backtracking
to search for better solutions.

Since exhaustive search of the variable space is expensive,
we propose to integrate some pruning techniques in the stan-
dard DPLL algorithm to significantly reduce the time com-
plexity. We show that the pruning techniques are effective
and DPLL-OPT requires only moderate overhead to find the
optimal solution.

Based on the DPLL-OPT algorithm, Plan-A operates in a
similar way as SATPlan that keeps increasing the makespan.
For a fixed makespan, Plan-A uses DPLL-OPT to either de-
cide the instance is unsatisfiable or finds a plan that mini-
mizes the objective function. Like SATPlan≺, Plan-A can
only guarantee optimality for a given makespan. However,
through extensive experimentation, we empirically found
that in most (over 94%) planning problems, the cost opti-
mal solutions also have the shortest makespan, which im-
plies that the optimal solution returned from the first fea-
sible makespan has a high probability to be the global op-
timal solution. Further, the pruning techniques employed
by DPLL-OPT allows SAT instances for longer makespans
to be solved much faster, using the incumbent solution to
prune the space. Therefore, Plan-A has an efficient anytime
version that keeps increasing the makespan and reports bet-
ter solutions if found.



Algorithm 1: Plan-A()
Input: a STRIPS planning problem P
Output: a solution plan with minimum action-cost
set an initial value of k ;1

while k ≤MaxLayer do2

encode P with k layers into a SAT instance S ;3

call DPLL-OPT(S);4

if a solution is found then5

update the incumbent solution;6

update the incumbent objective value ;7

k = k + 1 ;8

According to the experimental results, we see that Plan-
A is much faster than SATPlan≺. Comparing to SATPlan
and other suboptimal planners, Plan-A obtains solutions of
better quality, generally with longer solution time.

Overview of Plan-A
We give the overall process of Plan-A in Algorithm 1, which
follows the structure of SATPlan.

Plan-A first uses a reachability analysis to find the mini-
mum number of layers k needed for any solution plan (Line
1). The main while loop begins with encoding a STRIPS
planning problem P of k layers to a SAT instance S (Line
3), then calls the procedure DPLL-OPT developed below to
solve S (Line 4). When a solution is found at a layer k (Line
5), we may keep increasing k to find better solutions.

There is no theoretical guarantee of optimality. How-
ever, as we show in the experimental results on all STRIPS
domains in the recent International Planning Competitions
(IPCs), for over 94% of the problems, the optimal solution
is found at the first feasible layer. For all problems we have
tested, the optimal solution can be found within three layers
beyond the first feasible layer. Therefore, once the first fea-
sible layer is reached, we may keep searching for a limited
number of layers to see if there are any better solutions.

The key part of Plan-A is the DPLL-OPT algorithm that
finds solutions optimal in terms of the total action cost,
which we discuss in the next section. We remark that the
problem is different from the MAX-SAT problem whose
goal is to minimize the number of unsatisfied clauses, and
different from weighted MAX-SAT which assigns weights
to unsatisfied clauses.

Optimization with SAT Constraints
Most modern SAT solvers are based on the DPLL (Davis,
Logemann, & Loveland 1962) framework, along with
other techniques such as clause learning (Marques-
Silva & Sakallah 1996) and boolean constraint propaga-
tion (Moskewicz et al. 2001). We first briefly review the
DPLL algorithm and then propose our new algorithm that
can optimize an objective function subject to the SAT con-
straints.

The DPLL algorithm
There are many variations of the DPLL algorithm. Here,
we largely adopt the implementation used in the MiniSat

Algorithm 2: DPLL(S)
Input: SAT problem S
Output: a satistiable solution
initialize the solver;1

while true do2

conflict← propagate();3

if conflict then4

learnt← analyze(conflict);5

add learnt to the clause database;6

if top-level conflict found then7

return UNSAT;8

else9

backtrack();10

else11

if all variables are assigned then12

return SAT;13

else14

decide();15

solver (Eén & Sörensson 2004). The main procedure of
the DPLL algorithm is shown in Algorithm 2. DPLL() is
a conflict-driven procedure that detects and resolves con-
flicts until a satisfiable solution is found. After some ini-
tialization, the main loop starts by calling propagate() (Eén
& Sörensson 2004), which propagates the first literal p in
the propagation queue and returns a conflict if there is any
(Line 3). If no conflict occurs and all literals are assigned, a
solution is found.

If no conflict occurs but there are unassigned literals, it
calls decide() to select an unassigned variable p, assign it to
be true, and insert it into the propagation queue. Conse-
quently, those clauses related to variable p will also be prop-
agated, leading to more variable assignments. Each literal
has a decision level. Those newly assigned literals have the
same decision level as p. Starting from zero, the decision
level is increased by one each time decide() is called.

Once a conflict occurs, the procedure analyze() analyzes
the conflict to get a learnt clause (Line 5) and adds the learnt
clause to the clause database (Line 6). The learnt clauses
help enhance the effectiveness of constraint propagation. We
refer to (Eén & Sörensson 2004) for details of generating
the learnt clause. After the learnt clause is added, it calls
backtrack() to cancel the assignments that result in the con-
flict (Line 10). The backtrack() procedure keeps undoing
the variable assignments with a decreasing decision level un-
til exactly one of the variables in the learnt clause becomes
unassigned (they are all false when a conflict occurs).

The DPLL-OPT algorithm

Unlike the standard DPLL algorithm which stops whenever
a solution is found, DPLL-OPT searches the whole space to
solve an optimization problem defined as follows.

Given a SAT instance encoding a planning problem, sup-
pose it has n variables (x1, x2, . . . , xn), DPLL-OPT mini-



Algorithm 3: DPLL-OPT(S)
Input: SAT problem S
Output: a solution with minimum cost
initialize the solver;1

τ ←∞ ;2

num← 03

while true do4

conflict← propagate();5

if conflict then6

learnt← analyze(conflict);7

if conflict is of top-level then8

return num > 0 ? SAT:UNSAT;9

else10

add learnt to the clause database;11

backtrack();12

else13

let cost(V ) be the cost of the current partial14

assignment V ;
if cost(V ) ≥ τ then15

pruning(V );16

else17

if all variables are assigned then18

add blocking clause(V );19

else20

decide();21

mizes the objective function:

cost(V ) =
n∑

i=1

civi,

in which vi = 1 if variable xi is true and vi = 0 if xi is
false.

The SAT encoding we use is based on SATPlan (Kautz
2006), which has three different types of variables, includ-
ing those for facts, actions and dummy actions. We assign
each action variable a non-negative cost, and all the other
variables a zero cost. Therefore, the cost of each variable
ci, i = 1, · · · , n is defined as:

ci

{ ≥ 0, xi corresponds to an action
= 0, xi corresponds to a dummy action or a fact

More generally, for a partial assignment V where some
of the variables are free, we can still calculate cost(V ) by
excluding the unassigned variables in the summation.

Algorithm 3 illustrates the DPLL-OPT algorithm, which
largely follows the DPLL framework.

We initialize to infinity τ , the upper bound of the mini-
mum objective value. There are two major changes. First, to
enable continued search after satisfiable solutions are found,
we do not terminate the search but instead add a blocking
clause which prevents the search to yield previously found
solutions (Line 19). Second, we employ a pruning strategy
that prunes the search tree whenever the cost of the current
partial assignment is greater than τ (Line 16).

Algorithm 4: add blocking clause(V )
Input: a solution V
num++;1

τ ← cost(V );2

update the incumbent solution;3

create a blocking clause M ;4

add M to the clause database;5

learnt← analyze(M );6

add learnt to the clause database;7

backtrack();8

Blocking clauses Each time a solution is found, we add
a corresponding blocking clause to the clause database. By
representing the negation of a satisfying solution, the block-
ing clause guarantees that the visited solution will not be
found again. According to our experiments, there are usu-
ally a large quantity (up to hundreds of thousands) of satisfi-
able solutions to each individual SAT instance. As a result,
we need to prune the search tree.

Given a SAT problem with n variables (x1, x2, ..., xn),
suppose we have a valid solution V = (v1, v2, . . . , vn), vi ∈
{true, false}, we synthesize a blocking clause M as:

M =
n∨

i=1

literal(V, i),

where literal(V, i) =
{

xi, vi = true
xi, vi = false

.

The blocking clause ensures that any future solution
found by the search will differ from the current solu-
tion by at least one variable. For example, if a solu-
tion to a 5-variable SAT problem is (x1, x2, x3, x4, x5) =
(true, false, true, true, false), then we add the blocking
clause x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5.

Algorithm 4 gives details of add block clause(), which is
invoked when the solver finds a new solution. It starts by in-
creasing the counter of the number of solutions num (Line
1) and updating the minimum cost τ with the cost of the new
solution (Line 2). Then, a solution plan will be recorded
(Line 3). After that, we create a blocking clause (Line 4)
and add it to the clause database (Line 5) to ensure that the
solver will never generate the same solution later. The clause
will provide an additional constraint that enhances constraint
propagation. Using the blocking clause, a learnt clause will
be produced by analyze() (Line 6) and added to the clause
database (Line 7). We can do this because the current solu-
tion violates the blocking clause and thus can be treated as
a conflict. Finally, the procedure will undo assignments un-
til precisely one of the literals of the learnt clause becomes
unassigned (Line 8).

Pruning clauses Once a solution is found, we update the
threshold τ with its cost value. In the following search,
if the cost of the current partial assignment V exceeds τ
(cost(V ) > τ ), we consider it a deadend since no further
assignments could make the cost any lower. In this case, we
call pruning() to stop propagating and backtrack. This prun-
ing technique is crucial for speeding up the search. Without



Algorithm 5: pruning(V )
Input: A partial assignment V
create a pruning clause M ;1

learnt← analyze(M );2

add clause learnt to the clause database;3

backtrack();4

this pruning, we found that finding all the solutions for a give
SAT instance is prohibitively expensive.

Given a SAT instance of n variables (x1, x2, ..., xn), sup-
pose the current assignment is V = (v1, v2, . . . , vn), vi ∈
{true, false, free} and it turns out that cost(V ) ≥ τ , We
synthesize a pruning clause M as:

M =
n∨

i=1

literal(V, i),

where

literal(V, i) =

{
xi vi = true
xi vi = false

false vi = free

For example, suppose we have an assignment:
(x1, x2, x3, x4, x5) = (true, false, free, false, true), the
pruning clause will be x1 ∨ x2 ∨ x4 ∨ x5.

Algorithm 5 gives the details of the prune() procedure. It
starts by creating a pruning clause given the partial assign-
ment V (Line 1). Then, it generates a learnt clause from the
pruning clause (Line 2) and adds it to the clause database
(Line 3). Finally, we do backtracking to undo the assign-
ments (Line 4), since it is considered a deadend due to the
upper bound τ .

References
Chen, Y.; Zhao, X.; and Zhang, W. 2007. Long distance
mutual exclusion for propositional planning. In Proceeding
of International Joint Conference on Artificial Intelligence,
1840–1845.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. In Communications
of the ACM, volume 5.

Eén, N., and Sörensson, N. 2004. An Extensible Sat-solver.
Theory and Applications of Satisfiability Testing 502–518.

Giunchiglia, E., and Maratea, M. 2006. optsat: A Tool for
Solving SAT Related Optimization Problems. In JELIA,
volume 4160, 485–489.

Giunchiglia, E., and Maratea, M. 2007. SAT-Based plan-
ning with minimal-�actions plans and ”soft” goals. In Ar-
tificial Intelligence and Human-Oriented Computing, vol-
ume 4733, 422–433.

Kautz, H., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic, and stochastic search.
In Proceedings of 13th National Conference on Artificial
Intelligence(AAAI-96), 1194–1201. AAAI.

Kautz, H. 2004. SATPLAN04: Planning as satisfiability.
In Proceedings of IPC4, ICAPS.

Kautz, H. 2006. SatPlan: Planning as Satisfiability. In
Booklet of the 5th International Planning Competition.
Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP-A
New Search Algorithm for Satisfiability. In ICCAD. IEEE
Computer Society Press.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineerying an Efficient SAT
Solver. In Proc. of the 38th Design Automation Confer-
ence.


