
The LAMA Planner
Using Landmark Counting in Heuristic Search

Silvia Richter
Griffith University, Queensland, Australia

and
NICTA, Queensland, Australia

silvia.richter@nicta.com.au

Matthias Westphal
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Freiburg, Germany

westpham@informatik.uni-freiburg.de

Abstract

LAMA is a propositional planning system based on heuristic
search. Its core feature is the use of a pseudo-heuristic de-
rived from landmarks, propositions that must be true in every
solution of a planning task. It builds on the Fast Downward
Planning System, using non-binary (but finite domain) state
variables, and multi-heuristic search. A weighted A∗ search
is used with iteratively decreasing weights, so that the planner
continues to search for plans of better quality until the search
is terminated.

Introduction
LAMA is a planning system based on heuristic state space
search, in the spirit of HSP, FF and Fast Downward (Bonet
and Geffner 2001; Hoffmann and Nebel 2001; Helmert
2006). It builds on the Fast Downward System (Helmert
2006), inheriting the general structure of Fast Downward,
the translation of PDDL tasks with binary state variables
to representations with multi-valued state variables, and a
search architecture that is able to exploit several heuristics
simultaneously. The core feature of LAMA is the use of
landmarks as a pseudo-heuristic and for generating preferred
operators. The landmark counting heuristic was introduced
in a AAAI 2008 article (Richter, Helmert, and Westphal
2008).

Structure of the Planner
LAMA consists of three separate programs:

1. the translator (written in Python),

2. the knowledge compilation module (written in C++), and

3. the search engine (also written in C++).

To solve a planning task, the three programs are called in
sequence; they communicate via text files.

Translator
The purpose of the translator is to transform the planner in-
put, specified in the propositional fragment of PDDL (in-
cluding ADL features and derived predicates, but not the
preferences and constraints introduced for IPC-5), into a
multi-valued state representation similar to the SAS+ for-
malism (Bäckström and Nebel 1995).

The main components of the translator are an efficient
grounding algorithm for instantiating schematic operators
and axioms and an invariant synthesis algorithm for deter-
mining groups of mutually exclusive facts. Such fact groups
are consequently replaced by a single multi-valued state
variable encoding which fact (if any) from the group is sat-
isfied in a given world state.

The groups of mutually exclusive facts found during
translation serve an important purpose for determining or-
ders between landmarks. This is why LAMA does not read
the multi-valued state representations offered at ICP-6 (ob-
ject fluents) directly, but instead performs its own transla-
tion from the traditional (binary-variable) representation to
SAS+.

For more details on the translator component, see the ar-
ticle on Fast Downward by Helmert (2006). We have mod-
ified this component only in some minor ways, including
the extraction of all mutually exclusive facts (as mentioned
above), the handling of action costs for IPC-6, and some
small enhancements.

Knowledge Compilation
Using the multi-valued task representation generated by the
translator, the knowledge compilation module is responsible
for building a number of data structures which play a central
role in the subsequent landmark generation and search.

For example, domain transition graphs are produced
which encode for each state variable the ways in which it
may change its value through operator applications. Further-
more, the knowledge compilation module constructs succes-
sor generators and axiom evaluators, data structures for ef-
ficiently determining the set of applicable actions in a given
state of the planning task and for evaluating the values of
derived state variables. Again, we refer to Helmert (2006)
for more detail on the knowledge compilation component.

Search Engine
Using the data structures generated by the knowledge com-
pilation module, the search engine attempts to find a plan
using heuristic search with some enhancements, such as the
use of preferred operators (similar to helpful actions in FF)
and deferred heuristic evaluation, which mitigates the im-
pact of large branching factors in planning tasks with fairly



A

B C

Dpacket

truck1

E F

truck2

p1 p2

Figure 1: A logistics task: transport packet x from B to F .

accurate heuristic estimates. Deferred heuristic evaluation
means that states are not evaluated upon generation, but
upon expansion. States are thus not selected for expansion
according to their own heuristic value, but according to that
of their parent. If many more states are generated than ex-
panded, this leads to a substantial reduction in the number
of heuristic estimates computed, if at a loss of heuristic ac-
curacy.

The rules of the 6th International Planning Competition
(IPC-6), for which LAMA was designed, suggest a type
of search that takes plan quality into account. LAMA first
runs a greedy best-first search, aimed at finding a solution
as quickly as possible. Once a plan is found, it searches
for progressively better solutions by running a series of
weighted A∗ searches with decreasing weight. The cost of
the best known solution is used for pruning the search, while
decreasing the weight makes the search progressively less
greedy, trading speed for solution quality.

The search engine is configured to use several heuris-
tic estimators (namely, the FF heuristic and the landmarks
pseudo-heuristic) within an approach called multi-heuristic
search (Helmert 2006). This technique attempts to exploit
strengths of the utilised heuristics in different parts of the
search space in an orthogonal way. To this end, it uses sep-
arate open lists for each of the different heuristics as well as
separate open lists for the preferred operators of each heuris-
tic. Newly generated states are evaluated with respect to
all heuristics, and added to all open lists (with the value
estimate corresponding to the heuristic of that open list).
When choosing which state to expand next, the search en-
gine alternates between the different heuristics, and expands
states from preferred-operator queues with higher priority
than states from other queues.

Landmarks
Landmarks are variable assignments that must occur at some
point in every solution plan. They were first introduced by
Porteous, Sebastia and Hoffmann (2001) and later studied
in more depth by the same authors (Hoffmann, Porteous,
and Sebastia 2004). Consider the logistics example task in
Fig. 1, where the goal is to transport the packet from loca-
tion B to location F . In order to achieve the goal, the packet
must be loaded onto truck1 and unloaded at the airport C,
in order to then be loaded into one of the planes p1 or p2.
Hence, the facts “packet is on truck1”, and “packet is at C”

packet at B

packet in truck1

packet at F

truck1 at B

truck1 at D

truck1 at C

packet at C

Figure 2: Partial landmark graph for the example task in
Fig. 1, showing simple landmarks.

t1B

A

C

D

p1

p2

E

F

t2

Figure 3: Domain transition graph for the packet from Fig. 1.

are landmarks for this task. It is also possible to infer or-
ders between landmarks, e. g. in this case, that “packet is on
truck1” must be true before “packet is at C”. The landmarks
and orders can be stored in a directed graph called the land-
mark graph. For our example, a partial landmark graph is
depicted in Fig. 2.

Our algorithm for finding landmarks and orderings be-
tween them is similar to the one by Porteous and Cresswell
(2002), which is in turn based on the one by Hoffmann et
al. Like Porteous and Cresswell we admit disjunctive land-
marks (sets of propositions of which one needs to be true
at some point), but we adapted the algorithm to the SAS+

setting and use domain transition graphs to derive further
landmarks.

We find landmarks by backchaining from already known
landmarks, starting with the goals (which are landmarks by
definition, as they have to be true in every solution plan). For
any given landmark L that is not true in the initial state, we
consider the shared preconditions of its possible first achiev-
ers. Possible first achievers are those operators that a) have
L as an effect, and b) can be possibly applied at the end of
a partial plan (starting in the initial state) which has never
made L true. Their shared preconditions are those proposi-
tions (if any) that are a precondition for each of the opera-
tors. Every such shared precondition must be true in order
to reach L and is thus a landmark, which can be ordered
before L.

Since it is PSPACE-hard to determine the set of ac-
tual first achievers of a landmark L, we use an over-
approximation containing every operators that can possibly



be a first achiever. By intersecting over the preconditions
of more operators we do not loose correctness, though we
may of course miss out on some landmarks. The approx-
imation of first achievers of L is done with the help of a
relaxed planning graph (RPG) (Hoffmann and Nebel 2001).
During construction of the RPG we leave out any operator
that would add L. When the relaxed planning graph levels
out, its last set of facts is an over-approximation of the set of
facts that can be achieved before L in the planning task; we
denote it by pb(L) (for possibly before). Any operator that
is applicable given pb(L) and achieves L is a possible first
achiever of L.

We also create disjunctive sets of facts from the first
achievers’ shared preconditions, such that a set contains one
precondition fact from each first achiever. Hence, these sets
form disjunctive landmarks. All facts in a disjunctive land-
mark must stem from the same predicate symbol, and we
discard any sets of size greater than 4 in order to limit the
number of possible sets.

We generate further landmarks by exploiting the domain
transition graphs (DTGs) generated by the knowledge com-
pilation module. For each variable, a corresponding DTG
has a node for each value that can be assigned to the vari-
able, and arcs for possible transitions between them (where
a transition can be achieved through operator application).
For example, assume that the location of the packet in our
example is encoded with a state variable v. The DTG of v
is depicted in Fig. 3. From its initial value B, the location
of the packet can change to “in truck1” (denoted as t1 for
short), from there to any of the locations A, B,C and D and
so on.

Given a simple (i. e., non-disjunctive) landmark L =
{v 7→ l} that is not part of the initial state, we consider
the DTG of the landmark’s variable v. If there is a node
that occurs on every path from the initial state value s0(v)
of the variable to the landmark value l, then that node corre-
sponds to a landmark value l′ of the variable: We know that
every plan achieving L requires that v take on the value l′,
hence the fact L′ = {v 7→ l′} can be introduced as a new
landmark and ordered before L. To find these kinds of land-
marks, we iteratively remove one node from the DTG and
test with a simple graph algorithm whether s0(v) and l are
still connected – if not, the removed node corresponds to a
landmark. Nodes corresponding to assignments of v which
are not in pb(L) are removed from the DTG prior to this test,
as they can only occur after B and do not have to be tested.
However, we remember these nodes and if such a node is
later found to be a landmark (e. g. by the backchaining pro-
cedure), we can introduce an ordering between B and the
node.

Consider again the landmark graph of our example in
Fig. 2. Most of the landmarks and orders in it can be found
by the backchaining procedure even when restricting it to
simple, i. e., non-disjunctive, landmarks, because the propo-
sitions are direct preconditions of their successor nodes in
the graph. There are two exceptions: “packet in truck1” and
“packet at C”. These two landmarks are however found with
the DTG method. The DTG in Fig. 3 shows immediately,
that the package location must be both t1 and C on any path

from the initial state (where it has value B) to the goal F .
If we introduced another truck in the left city, the fact

“packet in truck1” would no longer be a landmark. How-
ever, using disjunctive landmarks we would get a landmark
for the packet being inside one of the two trucks.

Inconsistencies found in the translating phase are ex-
ploited to determine further orders between the landmarks,
using the definition of reasonable orders and the generation
conditions proposed by Hoffmann et al. (2004). For exam-
ple, the order depicted by a dotted line in Fig. 2 is such a
reasonable order. For more details on how landmarks and
their orders are derived, see the AAAI 2008 article (Richter,
Helmert, and Westphal 2008).

The Landmark Counting Heuristic
The LAMA planning system uses landmarks as a pseudo-
heuristic. We estimate the goal distance of a state s by the
number of landmarks l that still need to be achieved from
s onwards. We estimate this number as l̂ := n − m + k,
where n is the total number of landmarks, m is the num-
ber of landmarks that are accepted, and k is the number of
accepted landmarks that are required again. A landmark B
is accepted in a state s if it is true in that state and all land-
marks ordered before B are accepted in the predecessor state
from which s was generated. An accepted landmark remains
accepted in all successor states. An accepted landmark is re-
quired again if it is not true in s and it is a direct precondition
of some landmark which is not accepted. Note that l̂ is not
a proper state heuristic in the usual sense, as its definition
depends on the way s was reached during search. Neverthe-
less, it can be used like a heuristic.

We also generate preferred operators along with the land-
mark heuristic. An operator is preferred in a state if applying
it achieves an acceptable landmark in the next step, i. e., a
landmark whose predecessors have already been accepted.
If no acceptable landmark can be achieved within one step,
the preferred operators are those which occur in a relaxed
plan to the nearest acceptable landmark.

Integrating Action Costs
The landmark heuristic as outlined above estimates the goal
distance of states, i. e., the number of operator applications
needed to reach the goal state from a given state. Due to
the inclusion of action costs in IPC-6, however, we are inter-
ested in generating least cost plans rather than short plans.
Hence, the heuristics used during search should estimate the
cost of reaching the goal from a state rather than its goal
distance.

The FF heuristic that is also used in our framework can
easily be adapted to action costs, as we can use action
costs in the underlying additive heuristic (Bonet and Geffner
2001). When generating a relaxed plan from the additive
heuristic estimates, we simply use the cost rather than the
length of that relaxed plan as our estimate for the cost-to-
go of a given state. See Keyder and Geffner (2008) for a
detailed description of this cost-sensitive version of the FF
heuristic which they call FF(ha).



For the landmarks pseudo-heuristic this method is not
directly applicable, since no actual plan is formed by the
heuristic. Instead, we weigh landmarks with an estimate
on their minimum cost. Rather than counting the number
of landmarks that still need to be achieved from a state, the
heuristic value is then the sum of all minimum costs of those
landmarks. The cost estimate for each landmark is the mini-
mum cost that is required to make the landmark true for the
first time, i. e., the minimum of all action costs of its first
achievers.

Zero-cost actions can lead to problems in a standard cost-
sensitive search like weighted A*. Since zero-cost actions
can always be added to a search path “for free”, i. e., with-
out negative side effects, the search may explore very long
search paths without getting closer to a goal. In the worst
case, this can prevent it from finding a solution within the
given time limit. To avoid this problem, LAMA adds a con-
stant of 1 to all action costs. Of course this means that a plan
consisting of 5 originally zero-cost actions is deemed worse
by LAMA than a plan consisting of 2 action which origi-
nally cost 1, whereas the opposite is true. A smaller value
for the constant add-on would lessen the problem, though
not solve it completely.

Acknowledgements
We would like to acknowledge the support of NICTA.
NICTA is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the
Australian Research Council.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008.
Porteous, J., and Cresswell, S. 2002. Extending land-
marks analysis to reason about resources and repetition. In
Proceedings of the 21st Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG ’02), 45–54.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In Proc. ECP 2001, 37–48.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI 2008, 975–982.


