
Subset ofPDDL for the AIPS2000 Planning Competition
Draft 1

This document defines the subset of PDDL (planning domain definition language) that will be
used in the AIPS-2000 planning Competition. The full PDDL isdefined in [1], and entire sections

of this document have been copied verbatim from that source.

Contact Fahiem Bacchus (fbacchus@cs.toronto.edu) with comments.

Modification History
Jan. 27th. Original Version.
Feb. 14th. (1) removed negative preconditions fromSTRIPS actions, (2)

simplified parsing ofADL actions eliminating some unnecessary
“nesting”, (3) specified that problems will have all:objects
explicitly listed.

1 Introduction

This document defines the subset of the PDDL language that will be utilized in the AIPS-2000
planning competition. The restrictions imposed here are particularly important for the first track of
the competition (that involving fully automatic planning systems).

2 Syntactic Notation

We follow the notation used in the original PDDL definition. That is, we use an extended BNF
(EBNF) with the following conventions:

1. Each rule is of the form<syntactic element> ::= expansion.

2. Angle brackets delimit names of syntactic elements.

3. Square brackets ([and]) surround optional material.

4. An asterisk (*) means “zero or more of”; a plus (+) means “one or more of.”

5. Some syntactic elements are parameterized. E.g.,<list (symbol)>might denote a list of
symbols, where there is an EBNF definition for<list x> and a definition for<symbol>.
<list x> is defined to be:

<list x> ::= (x*)
so that a list of symbols is just(<symbol>*).

6. Ordinary parenthesis are an essential part of the syntax we are defining and have no semantics
in the EBNF meta language.

7. Optional material and expansion rules can both be superscripted with a requirement flag, such
as:� [(:types ...)]:typing, or� <atomic formula skeleton> ::=:typing (<predicate> <typed list

(variable)>)

it means that the optional material can only be included and the expansion rule can only be
applied when the domain has declared a requirement for that flag.

3 Domains

We now describe the language more formally. The EBNF for defining a domain is given in Fig. 1.
All domains specified in the competition will also satisfy the following:

1. All keyword arguments (for(define (domain ...)) and all similar constructs) will
appear in the order specified in Fig. 1. (Arguments may be omitted.)

2. Just one PDDL definition (of a domain, problem, etc.) will appear per file. Furthermore the
complete definitions will appear in the file (i.e., there is nofacility for splitting the definition
over multiple files).

Figure 1 Syntax of Domain Definition

<domain> ::= (define (domain <name>)
[<require-def>]
[<types-def>]:typing
[<constants-def>]
[<predicates-def>]
<action-def>�)

<require-def> ::= (:requirements <require-key>+)
<require-key> ::= :strips
<require-key> ::= :adl
<require-key> ::= :typing
<types-def> ::= (:types <typed list (name)>)
<typed?-list-of (t)> ::=:typing <typed list (t)>
<typed?-list-of (t)> ::= <list (t)>
<constants-def> ::= (:constants <typed?-list-of (names)>)
<predicates-def> ::= (:predicates <atomic formula skeleton>+)
<atomic formula skeleton>

::= (<predicate> <typed?-list-of (variable)>)
<predicate> ::= <name>
<variable> ::= ?<name>

Names: the category<name> consists of strings of characters that beginning with a letter and
contain only letters, digits, hyphens (“-”),and underscores (“ ”). Case is not significant. <name>’s
are required to be unique. That is, one cannot use the same name in two different definitions.

Requirements: we restrict ourselves to only two possible requirement flags

:strips STRIPS-style actions.

:adl ADL -style actions.

Note that, specifying:adl makes:strips redundant, asADL -style actions are a superset of
STRIPS-style actions. Furthermore,:strips is the default if no requirement flags appear.

Types: The:types argument uses the original PDDL syntax:

<typed list (x)> ::= x+
<typed list (x)> ::= x+- <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>+)

A typed list is used to declare the types of a list of entities;the types are preceded by a minus sign
(“-”), and every other element of the list is declared to be of thefirst type that follows it, orobject
if there are no types that follow it.

object andnumber are both predefined types.
An example of a<typed list(name)> is

integer float - number physob

If this occurs as a:types argument to a domain, it declares three new types,integer, float,
andphysob. The first two are subclasses ofnumber, the last a subclass ofobject (by default).
That is, every integer is a number, every float is a number, andevery physical object is an object.

An atomic type name is just a timeless unary predicate, and may be used wherever such a
predicate makes sense. In addition to atomic type names, there are also union types:(either t1
...tk) is the union of typest1 to tk.

Constants: The:constants field is simply a list of names (these names can be typed if the
:typing requirement flag has been specified). The names in the list aretaken as new constants in
this domain (perhaps with specified types). E.g., the declaration

(:constants sahara - theater
division1 division2 - division)

indicates that in this domain there are three distinguishedconstants,sahara of typetheater and
two symbols of typedivisions. If types are not required the following declaration can bemade:

(:constants sahara division1 division2)

Predicates The :predicates field consists of a list of declarations of predicates. For each
predicate we specify a list of variables (perhaps typed) to declare the arity of the predicate (and
perhaps also the types of its arguments.)
Equality “=” is a predefined predicate taking two arguments of any type.

4 Actions

4.1 STRIPSactions

If the domain definition specifiesSTRIPS-style actions (i.e., the requirement flag:adl does not
appear) then we can only expand<action-def> in the manner specified in Fig. 2.

The:parameters list is simply the list of variables on which the particular rule operates,i.e.,
its arguments.

:precondition is a conjunction of atomic formulas, while:effect is a conjunctions
of literals. In both cases,all of the free variables in these components must appear among the
:parameters.

These actions have standardSTRIPSsemantics. In particular, every binding of the:parame-
ters, �, generates a particular instance of the action. This instance is applicable to a stateS if and
only if the :precondition is true inS under the bindings�. The instance will then mapS to a
new stateS 0 generated by adding toS all positive atomic formulas appearing in:effect (after
applying the binding�), deleting fromS all negative atomic formulas appearing in:effect (after
applying�), and leaving unchanged all other ground atomic formulas true inS.

Figure 2 Syntax of Strips Actions

<action-def> ::= (:action <name>
:parameters (<typed?-list-of (variable)>)
<action-def body>)

<action-def body> ::= [:precondition <POS-CONJUNCTION>]
:effect <CONJUNCTION>

<term> ::= <name>
<term> ::= <variable>
<atomic formula(t)> ::= (<predicate> t�)
<literal(t)> ::= <atomic formula(t)>
<literal(t)> ::= (not <atomic formula(t)>)
<POS-CONJUNCTION> ::= <atomic formula(term)>
<POS-CONJUNCTION> ::= (and <atomic formula(term)>

<atomic formula(term)>+)
<CONJUNCTION> ::= <literal(term)>
<CONJUNCTION> ::= (and <literal(term)> <literal(term)>+)

4.2 ADL actions

If the domain definition specifiesADL -style actions, then we can expand<action-def> in the
more general manner specified in Fig. 3.

All of the free variables in:precondition <FORMULA>and in:effect <EFF-FORMULAS>
must appear in:parameters.

The effects of anADL action are specified a more complex manner so as to avoid certain con-
structions that would be more difficult to give semantics to.In particular, once we use awhen
(which is not the same asimplies), we have an<EFF-FORMULA>which can no longer appear
as the antecedent of anotherwhen. That is, we cannot nestwhens.

ADL actions have a semantics similar to theirSTRIPScounter parts. Once again every binding
of :parameters, �, generates a particular instance of the action that is applicable to a stateS if
and only ifS satisfies the operator’s:precondition (in this case a general first-order formula)
under�. If S does satisfy the precondition under the bindings�, the action instance will mapS to
a new stateS 0. S 0 can be computed fromS by applying the operator’s:effect (leaving all other
atomic formulas true inS unchanged):

Figure 3 Syntax of ADL Actions

<action-def> ::= (:action <name>
:parameters (<typed?-list-of (variable)>)
<action-def body>)

<action-def body> ::= [:precondition <FORMULA>]
:effect <EFF-FORMULA>

<FORMULA> ::= <literal(term)>
<FORMULA> ::= (not <FORMULA>)
<FORMULA> ::= (and <FORMULA> <FORMULA>+)
<FORMULA> ::= (or <FORMULA> <FORMULA>+)
<FORMULA> ::= (imply <FORMULA> <FORMULA>)
<FORMULA> ::= (exists (<typed?-list-of (variable)>+)

<FORMULA>)
<FORMULA> ::= (forall (<typed?-list-of (variable)>+)

<FORMULA>)

<ATOMIC-EFFS> ::= <literal(term)>
<ATOMIC-EFFS> ::= (and <literal(term)> <literal(term)>+)
<ONE-EFF-FORMULA> ::= <ATOMIC-EFFS>
<ONE-EFF-FORMULA> ::= (when <FORMULA> <ATOMIC-EFFS>)
<ONE-EFF-FORMULA> ::= (forall (<typed?-list-of (variable)>+)

<ATOMIC-EFFS>))
<ONE-EFF-FORMULA> ::= (forall (<typed?-list-of (variable)>+)

(when <FORMULA> <ATOMIC-EFFS>))
<EFF-FORMULA> ::= <ONE-EFF-FORMULA>
<EFF-FORMULA> ::= (and <ONE-EFF-FORMULA> <ONE-EFF-FORMULA>+)

1. Effects of the form<ATOMIC-EFFS>are applied by first applying the bindings� to<ATOMIC-
EFFS>, and then adding toS all positive atomic formulas in<ATOMIC-EFFS>and deleting
from S all negative atomic formulas in<ATOMIC-EFFS>, just like the conjunctive effects
of STRIPSoperators.

2. Effects of the form(when <FORMULA> <ATOMIC-EFFS>) are applied by first deter-
mining if S j= <FORMULA>. If this is the case then<ATOMIC-EFFS> is applied toS as in
the previous case.

3. Effects of the form(forall (<typed?-list-of-variables>)+<ATOMIC-EFFS>)
and(forall (<typed?-list-of-variables>)+(when <FORMULA> <ATOMIC-

Figure 4 Syntax of Problem Definitions

<problem> ::= (define (problem <name>)
(:domain <name>)
[(:requirements :typing)]
<object declaration>
[<init>]
<goal>+

<object declaration> ::= (:objects <typed?-list-of (name)>)
<init> ::= (:init <atomic formula(name)>+)
<goal> ::= (:goal <FORMULA>)

EFFS>))are applied by first finding all possible bindings for<typed?-list-of-variables>1

augmenting� with each such binding in turn, and then applying the internal <ONE-EFF-
FORMULA>with the augmented set of bindings.

4. Effects of the form(and <ONE-EFF-FORMULA> <ONE-EFF-FORMULA>+) are ap-
plied toS by applying each of the<ONE-EFF-FORMULA> to S.

5 Problems

A problem is what a planner tries to solve. It is defined with respect to a domain. A problem specifies
two things: an initial situation, and a goal to be achieved. The syntax for problem specifications is
given in Fig. 4.

A problem definition must specify an initial situation by a list of initially true ground atomic
formulas2

The:objects field is required to be present, lists objects that exist in this problem (which
might be a superset of those appearing it the initial situation). If typing is defined, this will be a
typed list of objects.

The:goal of a problem definition is a formula. A solution to a problem isa series of actions
such that (a) the action sequence is feasible starting in thegiven initial situation situation; (b) the
:goal, if any, is true in the situation resulting from executing the action sequence. It is likely that
:goal will be restricted to conjunctions of atomic formulas during the competition.

6 Format of Solutions

To be announced (probably in a form suitable for checking by the PDDL solution checker developed
by Drew Mcdermott).

1Typed variables have to be bound to constants of compatible type. Untyped variables can be bound to any constant.
2Negative atomic formulas are assumed to be true by the closedworld assumption.

References

[1] Drew McDermott et al.PDDL—The Planning Domain Definition Language. Yale University,
1998.

