Subset of PDDL for the AIPSfZOOO Planning Competition
Draft 1

This document defines the subset of PDDL (planning domaimitiefi language) that will be
used in the AIPS-2000 planning Competition. The full PDDId&ined in [1], and entire sections
of this document have been copied verbatim from that source.

Contact Fahiem Bacchus (fbacchus@cs.toronto.edu) withrents.

Modification History
Jan. 27th. Original Version.
Feb. 14th. (1) removed negative preconditions fremrIPS actions, (2)
simplified parsing ofaDL actions eliminating some unnecessary
“nesting”, (3) specified that problems will have albbj ect s
explicitly listed.

1

Introduction

This document defines the subset of the PDDL language thhbeviltilized in the AIPS-2000
planning competition. The restrictions imposed here argqodarly important for the first track of
the competition (that involving fully automatic planningstems).

2 Syntactic Notation

We follow the notation used in the original PDDL definitionhdt is, we use an extended BNF
(EBNF) with the following conventions:

1.

2
3
4,
5

Each rule is of the formrasyntactic element : : = expansion

. Angle brackets delimit names of syntactic elements.

. Square bracket$ (and]) surround optional material.

An asterisk () means “zero or more of”; a plug-Y means “one or more of.”

. Some syntactic elements are parameterized. €.gst (synbol) >might denote a list of

symbols, where there is an EBNF definition fdri st x> and a definition foxsynbol >.
<l i st z>is defined to be:

<list z> ::= (z*)

so that a list of symbols is jugt<synbol >*) .

. Ordinary parenthesis are an essential part of the syrearevdefining and have no semantics

in the EBNF meta language.

. Optional material and expansion rules can both be supaest with a requirement flag, such

as:

e [(:types ...)]*tvpine or
e <atomic fornul a skel eton> ::="*VPing (<predicate> <typed |i st
(vari abl e) >)

it means that the optional material can only be included ardekpansion rule can only be
applied when the domain has declared a requirement for duat fl

3 Domains

We now describe the language more formally. The EBNF for dejia domain is given in Fig. 1.
All domains specified in the competition will also satisf ttollowing:

1. All keyword arguments (fo¢ defi ne (domain ...)) and all similar constructs) will

appear in the order specified in Fig. 1. (Arguments may betech)t

2. Just one PDDL definition (of a domain, problem, etc.) wilpaar per file. Furthermore the

complete definitions will appear in the file (i.e., there isfadility for splitting the definition
over multiple files).

Figure 1 Syntax of Domain Definition

<donmi n> = (define (domain <nane>)
[<requi re-def >]
[<t ypes- def >] :typing
[<const ant s- def >]
[<pr edi cat es- def >]
<acti on- def >¥)
<r equi r e- def > c:= (:requirenents <require-key>")
<require-key> ci= strips
<requi r e- key> o= rad
<r equi r e- key> = :typing

<t ypes- def >

: (:types <typed list (nane)>)
<typed?-list-of (t)> ::

‘typing <typed |ist (t)>

<typed?-list-of (¢)> ::=<list (¢)>
<const ant s- def > = (:constants <typed?-1list-of (names)>)
<pr edi cat es- def > ;.= (:predicates <atom c fornula skel eton>")

<atom c formul a skel et on>

;.= (<predicate> <typed?-list-of (variable)>)
<pr edi cat e> ;.= <nane>
<vari abl e> D= ?<nane>

Names: the categorycname> consists of strings of characters that beginning with &leind
contain only letters, digits, hyphens (“-"),and underssof."). Case is not significankname>’s
are required to be unique. That is, one cannot use the sameinawo different definitions.

Requirements: we restrict ourselves to only two possible requirement flags

:strips STRIPSStyle actions.

. adl ADL-Style actions.

Note that, specifying adl makes: stri ps redundant, agDL-style actions are a superset of

STRIPSStyle actions. Furthermorest ri ps is the default if no requirement flags appear.

Types: The: t ypes argument uses the original PDDL syntax:
+
x

<typed list (z)> ::

<typed list (z)> ::= z"- <type> <typed list(z)>
<type> = <nane>
<type> ;1= (either <type>T)

A typed list is used to declare the types of a list of entitibg; types are preceded by a minus sign
(“- ™), and every other element of the list is declared to be ofitisetype that follows it, oobj ect
if there are no types that follow it.

obj ect andnunber are both predefined types.
An example of <t yped | i st (nane) >is

i nteger float - nunber physob

If this occurs as at ypes argument to a domain, it declares three new types,eger ,f | oat

andphysob. The first two are subclassesmiinber , the last a subclass obj ect (by default).

That is, every integer is a number, every float is a numbergaady physical object is an object.
An atomic type name is just a timeless unary predicate, ang lmaused wherever such a

predicate makes sense. In addition to atomic type names, dine also union typesg:ei t her ¢;

.. . t;) is the union of types; to t;.

Constants: The: const ant s field is simply a list of names (these hames can be typed if the
: t ypi ng requirement flag has been specified). The names in the lishkea as new constants in
this domain (perhaps with specified types). E.g., the datitar

(: const ant s sahara - theater
division1 division2 - division)

indicates that in this domain there are three distinguistoedtantssahar a of typet heat er and
two symbols of typadi vi si ons. If types are not required the following declaration camriagle:

(:constants sahara divisionl division2)

Predicates The: pr edi cat es field consists of a list of declarations of predicates. Fahea
predicate we specify a list of variables (perhaps typed)edate the arity of the predicate (and
perhaps also the types of its arguments.)

Equality “=" is a predefined predicate taking two arguments of any type.

4 Actions

4.1 STRIPSactions

If the domain definition specifiesTrRIPSstyle actions (i.e., the requirement flagdl does not
appear) then we can only expaxdct i on- def >in the manner specified in Fig. 2.

The: par anet er s listis simply the list of variables on which the particulate operates,e.,
its arguments.

. precondi ti on is a conjunction of atomic formulas, whileef f ect is a conjunctions
of literals. In both casesll of the free variables in these components must appeamgntioe
. par anet er s.

These actions have standadriPssemantics. In particular, every binding of thpar ane-

t er s, o, generates a particular instance of the action. This instanapplicable to a stateif and
only if the ;pr econdi ti onis true inS under the bindings. The instance will then maf to a
new stateS’ generated by adding t§ all positive atomic formulas appearing iref f ect (after
applying the bindingr), deleting fromsS all negative atomic formulas appearing iaf f ect (after
applyingo), and leaving unchanged all other ground atomic formulasinS.

Figure 2 Syntax of Strips Actions

<action-def > (:action <nane>
cparanmeters (<typed?-list-of (variable)>)
<acti on-def body>)

[: precondition <PQS- CONJUNCTI ON>]

ceffect <CONJUNCTI ON>

<acti on-def body>

<ternvp ;= <nane>
<ternp 1= <vari abl e>
<atomi c fornula(t)> ::= (<predicate> ¥
<literal (t)> .= <atomc formula(t)>
<literal (t)> ::= (not <atonic fornula(t)>)
<POS- CONJUNCTI ON> @ := <atomic formula(term >
<POS- CONJUNCTION> ::= (and <atonic forrmula(term >
<atomi c formul a(term>")
<CONJUNCTI ON> = <literal (term>
<CONJUNCTI ON> c:=(and <literal (term> <literal (term>")

4.2 ADL actions

If the domain definition specifiesDL-style actions, then we can expagédct i on- def > in the
more general manner specified in Fig. 3.

All of the free variables in pr econdi ti on <FORMULA>and in: ef f ect <EFF- FORMULAS>
must appear in par anet er s.

The effects of ammDL action are specified a more complex manner so as to avoidrceda-
structions that would be more difficult to give semantics bo.particular, once we use \shen
(which is not the same asmpl i es), we have arEFF- FORMULA> which can no longer appear
as the antecedent of anotiwdren. That is, we cannot nesthens.

ADL actions have a semantics similar to thgilRriPSscounter parts. Once again every binding
of : par anet er s, o, generates a particular instance of the action that is cgipk to a state if
and only if S satisfies the operatorispr econdi t i on (in this case a general first-order formula)
undero. If S does satisfy the precondition under the bindiagshe action instance will mag to
anew states’. S’ can be computed fror§ by applying the operator'sef f ect (leaving all other
atomic formulas true i¥ unchanged):

Figure 3 Syntax of ADL Actions

<action-def > (:action <nane>
cparameters (<typed?-list-of (variable)>)
<acti on-def body>)

[: precondition <FORMJULA>]

ceffect <EFF- FORMULA>

<action-def body> ::

<FORMULA> = <literal (term>

<FORMULA> ::= (not <FORMULA>)

<FORMULA> ;.= (and <FORMULA> <FORMULA>T)

<FORMULA> ::= (or <FORMULA> <FORMULA>T)

<FORMULA> o= (inmply <FORMULA> <FORMULA>)

<FORMULA> .= (exists (<typed?-list-of (variable)>")
<FORMULA>)

<FORMULA> ;.= (forall (<typed?-list-of (variable)>T)
<FORMULA>)

<ATOM C- EFFS> = <literal (term>

<ATOM C- EFFS> ;= (and <literal (term> <literal (ternm>")

<ONE- EFF- FORMULA> : . = <ATOM C- EFFS>

<ONE- EFF- FORMULA> : : = (when <FORMJLA> <ATOM C- EFFS>)

<ONE- EFF- FORMULA> ::= (forall (<typed?-list-of (variable)>")
<ATOM C- EFFS>))

<ONE- EFF- FORMULA> ::= (forall (<typed?-list-of (variable)>")

(when <FORMULA> <ATOM C- EFFS>))
<ONE- EFF- FORMULA>
(and <ONE- EFF- FORMULA> <ONE- EFF- FORMULA>*)

<EFF- FORMULA>
<EFF- FORMJLA>

1. Effects of the forrkATOM C- EFFS> are applied by first applying the bindinggo <ATOM C-
EFFS>, and then adding t6§ all positive atomic formulas ikATOM C- EFFS> and deleting
from S all negative atomic formulas iKATOM C- EFFS>, just like the conjunctive effects
of STRIPSOperators.

2. Effects of the form(when <FORMULA> <ATOM C- EFFS>) are applied by first deter-
mining if S |= <FORMULA>. If this is the case thedATOM C- EFFS> is applied toS as in
the previous case.

3. Effectsoftheforn{foral | (<typed?-1ist-of-variabl es>) T<ATOM C- EFFS>)
and(forall (<typed?-list-of-variables>)"(when <FORMULA> <ATOM C-

Figure 4 Syntax of Problem Definitions

<probl en» = (define (probl em <nanme>)

(: domai n <nane>)

[(:requirenments :typing)]

<obj ect decl aration>

[<init>]

<goal >*
<obj ect declaration> ::= (:o0bjects <typed?-list-of (nane)>)
<init> c:=(:init <atomic fornmul a(nanme)>")
<goal > = (:goal <FORMULA>)

EFFS>)) are applied by first finding all possible bindings &iryped?- | i st - of - var i abl es>!
augmentings with each such binding in turn, and then applying the interf@NE- EFF-
FORMULA> with the augmented set of bindings.

4. Effects of the form(and <ONE- EFF- FORMULA> <ONE- EFF- FORMULA>T) are ap-
plied toS by applying each of the ONE- EFF- FORMULA>1t0 S.

5 Problems

A problem is what a planner tries to solve. It is defined witpect to a domain. A problem specifies
two things: an initial situation, and a goal to be achievele $yntax for problem specifications is
given in Fig. 4.

A pr obl emdefinition must specify an initial situation by a list of iiilly true ground atomic
formulag

The: obj ect s field is required to be present, lists objects that exist is finoblem (which
might be a superset of those appearing it the initial sibumti If typing is defined, this will be a
typed list of objects.

The: goal of a problem definition is a formula. A solution to a problenaiseries of actions
such that (a) the action sequence is feasible starting igitlem initial situation situation; (b) the
: goal , if any, is true in the situation resulting from executing tction sequence. It is likely that
: goal will be restricted to conjunctions of atomic formulas dgrithe competition.

6 Format of Solutions

To be announced (probably in a form suitable for checkindheyRD DL solution checker developed
by Drew Mcdermott).

Typed variables have to be bound to constants of compatipke tntyped variables can be bound to any constant.
2Negative atomic formulas are assumed to be true by the clesdd assumption.

References

[1] Drew McDermott et al. PDDL—The Planning Domain Definition Languagéale University,
1998.

